
Vol.:(0123456789)

Engineering with Computers 
https://doi.org/10.1007/s00366-024-02098-5

ORIGINAL ARTICLE

Toward engineering lattice structures with the material point method 
(MPM)

Oliver Giraldo‑Londoño1 · Rogelio A. Muñetón‑López1 · Paul L. Barclay2 · Xiatian Zhuang1 · Duan Z. Zhang2 · 
Zhen Chen1,3

Received: 29 March 2024 / Accepted: 5 December 2024 
© The Author(s) 2025

Abstract
This study examines the potential of two variants of the material point method—the generalized interpolation material point 
(GIMP) and dual domain material point (DDMP) methods—in developing a robust computational framework for engineer-
ing lattice structures under different loading conditions. The study begins with assessing the ability of the two methods in 
predicting elastic buckling phenomena using column geometries with and without initial geometric imperfections. The results 
indicate that both methods effectively capture buckling phenomena when initial geometric imperfections are introduced. After 
this verification step, we create several models of tetrahedral lattice structures with varying strut diameter and orientation and 
subject them to quasi-static loading. We then validate the numerical results using laboratory test results. The results show 
that, while both methods accurately predict load–displacement curves in the pre-buckling regime, their predictive capabilities 
diminish in the post-buckling regime. Through visual comparison between the numerical and experimental deformed shapes, 
it appears that the discrepancies between model and experimental results are attributed to initial geometric imperfections in 
the lattices that occurred during 3D printing. We then establish a second set of lattice models where different types of initial 
geometric imperfections are considered. The results from these models show that imperfections have a negligible influence 
in the pre-buckling regime but affect the behavior considerably in the post-buckling regime. As a final step in this work, we 
subject the lattice models to impact loading and employ hypothetical soft and stiff materials. These results show that the 
lattice stiffness, which depends on material stiffness, strut diameter, and orientation, significantly influences the ability of 
a lattice structure to resist impact. In particular, we find that a stiffer lattice (i.e., one made with a stiff material and thicker 
struts) is capable of absorbing more energy than a softer one during impact. Although material nonlinearities, inelasticity, and 
detailed contact formulations are not considered in this study, the findings obtained herein lay the groundwork for engineering 
lattice structures under extreme loading conditions through a simulation-driven framework based on particle-based methods.
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1 Introduction

The pursuit of innovative materials with enhanced and 
controlled properties has prompted the development of 
metamaterials—engineered structures that can achieve 
properties unattainable by conventional materials. 
Metamaterials showcase extraordinary capabilities, allowing 
for tailored designs to achieve specific functionalities, such 
as superior strength-to-weight ratios or resistance to extreme 
loading conditions, including high pressures, temperatures, 
and/or strain rates. One of the main advantages of 
metamaterials is their ability to be fine-tuned. For instance, 
properties such as stiffness, strength, or anisotropy can be 
tailored through lattice structure manipulations, which has 
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motivated their use in a diverse range of energy absorption 
applications [1–6].

Bioinspiration offers a unique avenue for designing novel 
metamaterials with unconventional properties. Through bil-
lions of years of evolution, some biological materials have 
developed fascinating hierarchical porous architectures to 
resist damage. For instance, a recent study revealed a dam-
age-tolerant, dual-scale, single-crystalline microlattice in 
the biomineralized skeleton of the knobby starfish [7]. The 
structure of this material is composed of diamond-like tetra-
hedral unit cells that enhance its damage and failure resist-
ance, thus making it a promising prototype for bioinspired 
metamaterial design. Inspired by the robust architecture of 
tetrahedral unit cells found in biological systems, this paper 
studies the mechanical response of engineered tetrahedral 
lattice structures under quasi-static loading and explores 
their potential for impact resistance applications.

Due to the complexity associated with the behavior of 
lattice structures, robust numerical methods are necessary 
to predict and optimize their responses. These numerical 
methods should have the ability to handle responses such as 
large deformations, self-contact, material nonlinearities, and 
damage. When attempting to model these responses, mesh-
based methods such as the finite element method (FEM) may 
face challenges and limitations. One such limitation is the 
need to generate body-fitted meshes with fixed connectivity. 
Generating such meshes can be time-consuming and prone 
to numerical instabilities when dealing with large element 
distortions or failure evolution. While remeshing can allevi-
ate issues associated with large element distortions, this adds 
implementation complexity and computational expense. In 
addition to its limitations when modeling very large defor-
mations, Lagrangian finite element formulations may face 
challenges when modeling buckling phenomena, potentially 
requiring remeshing or special stabilization techniques.

The limited ability of mesh-based methods to effectively 
simulate large deformation problems involving multi-phase 
interactions (e.g., solid–liquid-gas or hard-soft media), and/
or failure evolution (e.g., during impact and penetration 
events) has motivated the development of alternative numer-
ical approaches known as “meshless particle methods” [8]. 
One of these methods is the material point method (MPM) 
[9], which uses a Eulerian (fixed) background mesh (grid) to 
avoid mesh distortion issues and employs a double-mapping 
between Lagrangian material points (particles) and corre-
sponding grid nodes to better simulate multi-phase interac-
tions.1 During an MPM integration timestep, the background 

grid advances with a Lagrangian nodal velocity. However, 
this Lagrangian nodal velocity is interpolated to the material 
points before the nodal positions are updated. Because this 
interpolation occurs before the nodal position update, the 
grid can be reset, and therefore remaining “static” for the 
next integration timestep.

Both the FEM and MPM are based on a similar weak 
formulation of the governing equations, but, unlike FEM, 
the MPM is a continuum-based particle method that uses 
particles to represent the material. These particles serve as 
integration points within the background Eulerian grid. This 
gives the MPM attributes of both Lagrangian and Eulerian 
formulations. As shown in several review papers and books 
[10–14], the MPM has been applied to many areas in simula-
tion-based engineering science, with recent advances being 
made for improved multi-physics simulation, and high-order 
accurate and smooth discretization. Moreover, the MPM has 
found applications in various problems in solid mechanics, 
including mantle convection [15], silo discharge [16], mem-
brane stretching [17], landfill settlement [18], elastic vibra-
tions [9], collisions [9, 19–21], granular material response 
[22–25], among others.

While the MPM has proven effective in many applica-
tions, its original formulation has been shown to exhibit 
issues associated with cell-crossing noise, which arise 
mainly due to the discontinuous gradient of the shape func-
tions [26, 27]. This phenomenon significantly affects the 
accuracy of the solution, potentially causing premature 
material failure and alterations in how materials behave 
during the fracture process [27]. To alleviate this numerical 
noise, the MPM has been generalized through a variational 
formulation and a Petrov–Galerkin discretization scheme, 
leading to the development of the generalized interpolation 
material point (GIMP) method [28]. The GIMP method 
improves precision, reduces cell-crossing noise, and expands 
the capability of the original MPM.

In the GIMP method, tracking the shape of the material 
points is required [28–30]. However, to avoid this complex-
ity, a modified version of GIMP known as uGIMP simplifies 
the approach by assuming that the material points have a 
constant shape, i.e., they do not deform during the deforma-
tion process, thereby removing the need for shape tracking. 
This modification has proven to be effective in scenarios 
with small deformations [29, 30]. When dealing with prob-
lems involving large deformations, however, tracking the 
shape of the material points remains necessary [28–30]. The 
dual domain material point (DDMP) method was proposed 
to overcome this limitation [27]. Unlike the GIMP method, 
which modifies the shape functions used in the original 1 For the problems considered in this work, MPM and its advanced 

versions (GIMP and DDMP) offer no advantage over FEM. Both 
methods share the same weak formulation, but MPM requires 
two mapping operations per time step, making it about twice as 
computationally expensive as FEM in this case. However, this study 
serves as a first step toward employing MPM to engineering lattice 

structures under extreme loading involving large deformations and 
multi-phase interactions.

Footnote 1 (Continued)
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MPM, the DDMP method only adjusts the gradients of those 
shape functions. This approach ensures continuity of nodal 
forces, as material points move across cell boundaries and 
extends the influence domains of both material points and 
nodes for gradient-related quantities, while preserving the 
influence domains for other quantities as related to the origi-
nal MPM. The DDMP method enhances accuracy in han-
dling large material deformations, thereby providing a robust 
approach for simulations involving such deformations. Our 
work employs both the uGIMP and DDMP methods to 
model the response of tetrahedral lattice structures under 
quasi-static and dynamic loading, respectively.

Regardless of the method used, unless contact is explic-
itly modeled, the MPMs will “numerically weld” separate 
bodies that come close to one another within a single com-
putational cell [23, 25, 31–36]. Bardenhagen et al. [23] pro-
posed a correction step when computing the grid velocity to 
account for frictionless contact between distinct bodies. This 
correction step was then expanded to account for frictional 
contact [35]. Homel and Herbold [31] expanded the contact 
method to account for self-contact between two distinct parts 
of the same body. For contact algorithms, accurately com-
puting the surface normal between the bodies is essential 
for obtaining high-fidelity results [33, 34]. Implementing 
contact algorithms into our GIMP and DDMP codes is an 
active area of work, and we plan to study their effects on 
similar lattice structures in the next phase of our project.

Building on the preceding discussion, this study inves-
tigates the features of the GIMP and DDMP methods in 
developing a robust computational framework tailored to 
engineering lattice structures under extreme loading condi-
tions. As an initial step towards this overarching goal, the 
present study uses these two methods to evaluate the quasi-
static and dynamic responses of tetrahedral lattice structures. 
While the proposed framework does not fully account for 
complex phenomena such as material nonlinearities, ine-
lastic responses, and/or strut-strut frictional contact, this 
study serves as a pivotal milestone for assessing the suit-
ability of the GIMP and DDMP methods in simulating the 
large-deformation responses of these lattice structures. By 
modeling and evaluating various configurations of the lattice 
structures (e.g., by varying strut thickness and their orien-
tation), our aim is to identify the strengths and limitations 
inherent in these methods for such applications. The findings 
from this investigation will lay the groundwork for refining 
and advancing this computational framework, which will 
ultimately enable the design of lattice structures for extreme 
loading applications.

The remainder of the paper is structured as follows. In 
Sect. 2, we provide the theoretical background and compare 
the essential features of the GIMP and DDMP methods. Sec-
tion 3 presents experimental results obtained from quasi-
static compression tests conducted on various tetrahedral 

lattice structures. In Sect. 4, we verify the predictive capa-
bilities of both GIMP and DDMP methods in modeling the 
buckling response of simplified column models. In Sect. 5, 
we create GIMP and DDMP models for various tetrahedral 
lattice structures and compare the numerical results against 
the experimental results discussed in Sect. 3. Section 6 
focuses on investigating the dynamic response of several 
lattice structures under impact loading using the verified 
and validated MPM-based codes. Finally, Sect. 7 provides 
concluding remarks and presents an outlook for future work.

2  Fundamentals of the GIMP and DDMP 
methods

This section revisits the theoretical foundations of the GIMP 
and DDMP methods, both derived from the original MPM. 
As in the FEM, the MPM is based on the weak formulation 
of the governing equations. Through the double-mapping 
between material points and corresponding grid nodes, how-
ever, the MPM does not employ a fixed mesh connectivity 
as required in the FEM. The MPM uses shape functions 
satisfying the Kronecker-delta property, meaning that the 
shape function Si(x) is nonzero at node i and zero at all other 
nodes. Within each background cell in the MPM (or element 
in the FEM), the shape function is often defined as a poly-
nomial in terms of the coordinates in a reference frame. The 
internal force f int

i
 at node i is then defined as

with Ω being the computational domain.
In the FEM, the integral in Eq. (1) is typically calcu-

lated via Gauss integration with the Gauss points being fixed 
within the corresponding element. In the MPM, this integral 
is calculated using material points and is approximated as 
[9]

where �p is the stress at a material point p , xp is the coor-
dinate of the material point, and Vp = mp∕�p with mp being 
the mass associated with the material point and �p being the 
material density. Owing to its dimensions of volume, Vp is 
often referred to as the volume of the material point. How-
ever, strictly speaking, with this definition of Vp , a material 
point is essentially a mass point devoid of both shape and 
volume.

Different from the FEM, the MPM uses a Eulerian (fixed) 
background cell (grid) for divergence and gradient opera-
tions. The Lagrangian capability of the MPM comes from 
moving material points carrying all the corresponding 

(1)f int
i

= −∫ Ω

�(x)∇Si(x)dV ,

(2)f int
i

≈ −
∑

p
Vp�p∇Si

(

xp
)

,
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information such as mass density, strain, and internal state 
variables. In other words, the position of the material point, 
xp , is a function of time. In the original MPM with linear 
shape functions [9], the shape functions are only required 
to be continuous, but not smooth across cell boundaries. As 
a result, when a material point moves across a cell bound-
ary, ∇Si

(

xp
)

 becomes discontinuous, leading to a disconti-
nuity in the internal force when Eq. (2) is used. This dis-
continuity often leads to numerical noise and failure of the 
numerical calculations [28]. Both DDMP and GIMP address 
this issue by having continuous gradients of the shape func-
tions. Alternatively, higher order B-spline shape functions 
(i.e., quadratic or cubic) can also be used to address this 
issue if a structured mesh is used.

The generalized interpolation material point (GIMP) 
method [28] was developed to address this issue of internal 
force discontinuity. This is achieved by introducing a parti-
cle domain for defining the shape functions. In the GIMP, 
a material point is no longer a geometric mass point, but a 
finite domain of the material. In other words, in addition to 
the discretization of the background grid, the GIMP intro-
duces another discretization by dividing the material into 
small domains (still called material points). Given that the 
GIMP considers a material point as a finite domain, as the 
material deforms and moves in each time step, a portion of 
the material point may move across cell boundaries. As a 
result, only the portion of the material point within the cell is 
considered when calculating the internal force contribution 
from each material point. Because it takes time for a material 
point domain to move across a cell boundary completely, the 
internal force calculated this way becomes continuous, thus 
eliminating the cell-crossing noise inherent in the original 
MPM.

These domains of material points are supposed to cover 
the entire material without overlap. This condition is often 
termed partition of unity, since one can define a character-
istic function for each of these domains. When the domains 
cover the entire material without overlap, the characteristic 
functions sum to unity everywhere. When this condition is 
satisfied, the GIMP method satisfies conservation of mass 
and momentum. For one-dimensional problems, this condi-
tion is easy to be satisfied. For two- or three-dimensional 
problems, however, one could easily create material point 
domains that satisfy this condition initially but maintaining 
it throughout the calculation is more challenging, especially 
for those cases involving large deformations and failure 
evolution.

One way to avoid the above issue is to relax this restric-
tion and allow for certain errors in satisfying the condition 
of partition of unity. One such approach is called uGIMP 
[27], in which the center of the domain associated with 
a material point moves with the point, but the domain is 
not allowed to deform in the calculation. In this way, the 

uGIMP method approximately satisfies partition of unity, 
but gaps and overlaps between the domains can happen. 
To improve the uGIMP, another approach called cpGIMP 
was introduced [27]. In the cpGIMP method, the material 
point domain can stretch and compress along the direc-
tions of the coordinate axes, but it does not account for 
shear deformation or rotation.

To allow for shear deformations and rotation of the 
particle domain, convected particle domain interpolation 
(CPDI) methods [30, 31] have been introduced. In CPDI 
methods, the local deformation gradient around the mate-
rial point is used to deform the domain of a material point 
such that the gaps and overlaps between the domains are 
reduced, with additional computational expenses as com-
pared with the GIMP methods. To balance computational 
accuracy and efficiency, we utilize the uGIMP method [27] 
in this study but refer to it as the GIMP method from here 
on.

The DDMP method [27] also seeks to address the internal 
force discontinuity issues discussed earlier, but it employs a 
different approach. In the DDMP method, material points are 
still treated as geometric mass points. The stress at a mate-
rial point is divided into two parts using a partition function 
�(xp) , which takes a value of zero on cell boundaries. The 
first part, �

(

xp
)

�p , of the stress is considered in the same 
way as the MPM, namely by replacing the stress �p with 
�
(

xp
)

�p in Eq. (2). Since �(xp) = 0 on the cell boundary 
related to any material point, the cell crossing discontinuity 
is eliminated for this part. The second part, [1 − �

(

xp
)

]�p , 
of the stress is mapped to the surrounding nodes using the 
typical particle-to-node mapping in the MPM to obtain a 
discounted (by � ) nodal stress �d

i
 . This nodal stress can then 

be interpolated into corresponding cells as

Since the shape function is continuous on the cell bound-
aries, �d

i
 is continuous as the material points move across 

cell boundaries. This stress is then substituted into Eq. (1) 
to determine its contribution to the nodal force. Combining 
both parts of the stress from the material points, the internal 
force at a corresponding node is then given by

Because �d
i
 is continuous and �

(

xp
)

= 0 on the cell 
boundaries, the internal force calculated this way is 
continuous as material points move across cells. The integral 
in Eq. (4) is independent of the stresses and locations of 
material points, and only needs to be calculated once in a 
calculation. Because of the supports of the shape functions, 

(3)�
d(x) =

∑

j
�
d
j
Sj(x).

(4)

f inti ≈ −
∑

p
Vp�p�

(

xp
)

∇Si
(

xp
)

−
∑

j
�d
j ∫ Ω

Sj(x)∇Si(x)dV .
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this integral is only nonzero if nodes i and j share the same 
cell.

In principle, the internal force calculated with Eq. (4) 
depends on �

(

xp
)

. In practice, the results are insensitive 
to the choice of this function, especially for calculations 
with sufficient mesh resolution, because the internal force 
from Eq. (4) converges to that from Eq. (1) with the cell 
refinement [27]. The function �

(

xp
)

 is only required to be 
continuous and positive, with �

(

xp
)

= 0 on the cell bounda-
ries. In this study, we adopt the following expression for 
�(xp) , because it generally yields satisfactory results in many 
DDMP calculations [27]:

where nc is the number of nodes for the cell containing xp , 
and d is the problem dimension.

Since �d
i
 is calculated from the stresses at material points, 

we can define a function ∇Si(x) , called modified gradient of 
the shape function, to rewrite Eq. (4) in terms of the stresses 
at the material points:

where

with Vj being the volume associated with node j . In this way, 
the DDMP method can be regarded as a version of the MPM 
that uses the original shape functions, but with the gradient 
of the shape functions being modified as shown in Eq. (7). 
The material points in the DDMP method remain to be geo-
metrical mass points, and hence, there is no need to track the 
shape change in the calculation.

Since the original shape function satisfies the partition 
of unity, mass conservation is guaranteed in the DDMP 
method. One can also show that the modified shape func-
tion gradient satisfies the following [27]:

These two conditions ensure both momentum 
conservation and second order accuracy in the total energy 
conservation [27], provided that the velocity gradient is 
also calculated using the modified gradient of the shape 
function as defined in Eq. (7). Although Eq. (6) is in a form 
that facilitates a discussion of its numerical properties, 
in practice, the nodal internal force is calculated using 
Eq. (4). Compared to the original MPM, DDMP requires 
additional mappings between the material points and 

(5)�
(

xp
)

= 0.5

{

nc
∏

i=1

2[Si(xp)]

}
3

2(nc−1)d

,

(6)f int
i

≈ −
∑

p
Vp�p∇Si

(

xp
)

,

(7)

∇Si(x) = �(x)∇Si(x) + [1 − �(x)]
∑n

j

Sj(x)

Vj
∫ Ω

Sj(x)∇Si(x)dV ,

(8)
∑

i
∇Si

(

xp
)

= 0,
∑

i
xi∇Si

(

xp
)

= I.

corresponding nodes, making it more computationally 
expensive [27]. However, these additional mappings do not 
impose any geometric restrictions, so DDMP can be used 
on unstructured meshes. Interested readers are referred to 
[27] for details of the additional mappings involved in the 
DDMP method.

As discussed earlier, both the GIMP and DDMP methods 
offer solutions to mitigate the cell-crossing noise encoun-
tered in large deformation analyses, albeit each with its own 
modifications to the original MPM. In this study, therefore, 
we aim to verify the numerical solutions by comparing the 
response features of representative lattice structures using 
the DDMP and GIMP methods. The verified solutions 
will then be validated against experimental data from in-
lab experiments. Following verification and validation, the 
proposed computational procedure will then be employed to 
simulate the behavior of the lattice structures under dynamic 
loading scenarios for which experimental data are not read-
ily available.

3  Experimental testing of tetrahedral lattice 
structures

This section presents the results of quasi-static tests 
conducted on several 5 × 5 × 5 tetrahedral lattice structures, 
whose geometry is shown in Fig. 1. As shown in the figure, 
each lattice consists of tetrahedral unit cells composed of 
four cylindrical struts. The three inclined struts are of equal 
length, L , while the upper (vertical) strut is of length 2L∕3 . 
Each inclined strut forms an angle � with the horizontal 
plane, and all struts have the same diameter, t  . The lattice 
structures are subjected to a quasi-static compressive force, 
F.

The dimensions of the lattice structures and details of the 
fabrication process are provided in Sect. 3.1, followed by 
a discussion of the loading conditions and the quasi-static 
compression testing procedures in Sect.  3.2. As shown 
later, these experimental results serve to validate the GIMP 

Fig. 1  Illustration of a representative 5 × 5 × 5 lattice structure and its 
corresponding tetrahedral unit cell
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and DDMP models by assessing their ability to predict the 
global and local behaviors of the lattice structures under 
deformation.

3.1  Fabrication of tetrahedral lattice structures

We used an Original Prusa SL1S SPEED 3D printer to 
fabricate six variations of the lattice structures depicted 
in Fig. 1. Each lattice variant combined a specific strut 
diameter, t , and strut orientation, � , for a fixed strut length, 
L = 8 mm. As detailed in Fig. 2, we considered two strut 
diameters ( t = 1.6 mm and t = 2.4 mm), and three strut 
orientations ( � = 20◦ , � = 30◦ , and � = 40◦ ). These lattice 
designs were fabricated using the Value UV / DLP Resin 
Flex from PrimaCreator, which offers a balance between 
stiffness and flexibility suitable for testing purposes. After 
printing, the lattice structures were cleaned with isopropyl 
alcohol to remove any residual uncured resin, followed by 
drying and curing under UV-light in a CW1S machine. 
Specifically, the specimens were placed in the chamber 
which heated to 50 °C, then they were dried for 5 min and 
subsequently cured for 5 min. Once cured, the specimens 
were stored in an opaque container to reduce exposure to 
light, ensuring optimal conditions for further testing. Before 
testing, the lattices were conditioned at standard laboratory 

atmosphere in accordance with Procedure A of the ASTM 
D618 standard. To facilitate testing, 3 mm-thick plates 
were added at the top and bottom ends of the lattices (see 
Fig. 2). Moreover, to reduce the impact of manufacturing 
imperfections, the lattices were printed at a 30° angle (see 
Fig. S1). A picture of an actual 3D printed lattice is shown 
in Fig. S2.

To facilitate the identification of the lattices in the sec-
tions that follow, we adopted the naming convention TXPY. 
In this system, X indicates the lattice type, with 1 repre-
senting the lattices with a strut thickness of 1.6 mm and 2 
representing the lattices with a strut thickness of 2.4 mm. 
Moreover, Y represents the strut orientation (i.e., 20°, 30°, 
or 40°). To illustrate, a specimen labeled “T1P30” has a strut 
thickness of 1.6 mm and strut orientation of 30°.

3.2  Quasi‑static compression testing of tetrahedral 
lattice structures

Prior to performing the quasi-static compression tests on the 
lattice structures, we first characterized the base material. 
This was achieved via uniaxial compression tests. To that 
end, solid cylindrical test specimens of 20 mm in diameter 
and 60 mm in length were 3D printed and conditioned 
following the protocol discussed previously. The tests 

Fig. 2  Tetrahedral lattices with various orientations and strut thicknesses used for the experimental campaign. Lattices labeled with T1 and T2 
correspond to strut thicknesses of t = 1.6 mm and t = 2.4 mm, respectively
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were performed on an ADMET universal testing machine 
at a controlled displacement rate of 0.003 mm/min, which 
resulted in a measured Young's modulus of approximately 
9.2 MPa (see Figs. S4 and S5).2

After characterization of the base material, the previously 
discussed lattice variations were subjected to quasi-static 
compression using the same ADMET universal testing 
machine. The machine was equipped with a 2 kN load cell 
and two flat plates to ensure uniform application of the com-
pressive load. Moreover, the plates were lubricated with oil 
to approximate purely uniaxial compression boundary con-
ditions. To ensure data reliability, we printed three identical 
specimens of each of the lattices shown in Fig. 2, resulting 
in a total of 18 specimens for testing (refer to Fig. S4 in the 
supplementary information for additional information about 
the experimental testing setup). The quasi-static tests were 
conducted at a constant displacement rate of 0.05 mm/s, 
and the resulting load–deflection curves were obtained by 
measuring the force reaction at the top plate. Furthermore, 

a digital camera was used to record the tests for subsequent 
analysis.

Figure 3 displays the experimental load–deflection curves 
obtained for all the T2PY specimens (i.e., those with strut 
diameter, t = 2.4 mm, and strut angles � = 20◦ , 30◦ , and 
40◦ ), along with snapshots depicting the deformed shape of 
the T2P30 lattice during one of the quasi-static tests. Results 
for all the other lattices considered in the present study are 
shown in Figs. S6–S8. The graphs reveal a common pattern 
in the behavior of the lattices characterized by a rapid 
increase in the load until reaching a peak value, followed 
by a plateau region, and then by a hardening region. In 
the plateau region, we observed significant deformation 
of the lattices, alongside minimal variations in the load 
level and progressive buckling of the struts. Specifically, 
at a deflection of about 15 mm, buckling or initial buckling 
of several struts was observed across all lattices.3 As the 
load–displacement curves transition into the hardening 
region, they exhibit a steep upward trend as the structure 
densifies, shifting from a cellular to a solid-like state.

Fig. 3  Response of the T2P20–T2P40 lattice structures under quasi-
static compression. Outsets A–C show snapshots of the T2P30 lattice 
at different deformation levels: (A) shows the deformation at the peak 

load, (B) at 50% of strain, and (C) at 90% of strain. The inset shows 
average load–deflection curves of the T2PY lattices

2 To account for potential variability in material properties and 
experimental uncertainty, the numerical simulations conducted in 
the following sections assume Young’s modulus values of either 
8 MPa or 10 MPa. This allowed us to explore the sensitivity of our 
numerical results to variations in material stiffness. Moreover, a 
Poisson's ratio of 0.4 was assumed for the simulations based on the 
values for similar materials.

3 The buckling behavior in this phase can be classified as 
predominantly elastic, as the structures returned to their original 
shape after load removal, indicating no permanent deformation (see 
Figs S9 and S10).
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During the hardening phase, the struts come into 
contact with one another, and the specific arrangement of 
the unit cells causes the struts to push against each other, 
contributing to the increased stiffness and hardening of 
the material. This interaction between the struts plays 
a significant role in the densification process, leading 
primarily to geometric nonlinearities in the overall response 
of the lattices. Since the lattices returned to their original 
shape after load removal (see Figs. S9 and S10), material 
inelasticity (e.g., damage or plasticity) is minimal and does 
not significantly contribute to the overall behavior. The 
global nonlinear nature of the load–displacement behavior 
shown in Fig. 3 reflects the combined effects of progressive 
buckling, geometric changes, and contact between the 
struts during densification. While individual struts exhibit 
primarily elastic buckling at the local level, the hardening 
phase introduces more complex nonlinear behavior as the 
structure transitions into a densified state.

Interestingly, the results reveal that the 20° lattices den-
sified at smaller deflections compared to their 30° and 40° 
counterparts. Specifically, the onset of densification for 
the 20° lattices occurred at a deflection of approximately 
17 mm, while that for the 30° and 40° lattices occurred at 
deflections of approximately 20 mm and 23 mm, respec-
tively. This early densification in the 20° lattices is attributed 
to their shallower angle, which results in contact between 
struts occurring at smaller deflection levels.

4  Comparison between GIMP and DDMP 
results for simplified models

The experimental findings from the previous section indicate 
that the lattice structures undergo large deformations and 
exhibit progressive buckling of the struts as they deform 
(e.g., see Fig. 3). This buckling phenomenon plays a critical 
role in understanding the overall behavior of the lattices and 
has significant implications in their load-bearing capacity. 
Therefore, prior to modeling the lattices, our initial focus is 
on examining the ability of the GIMP and DDMP methods 
to predict the buckling response of slender columns sub-
jected to slow-speed loading aimed to simulate quasi-static 
loading conditions, such as those considered in the experi-
ments discussed previously. These results will serve as a 
verification step, enabling us to evaluate the predictive abil-
ity of both methods.

We considered a solid cylindrical column with 
two different diameters, t = 1.6 mm and t = 2.4 mm, 
corresponding to the diameters of the lattice struts (see 
Sect.  3.1). To trigger a smooth buckling response, we 

introduced initial geometric imperfections in the form of 
u0 = asin(�z∕L),4 where a is the initial deflection at the 
mid-point and L = 16 mm is the length of the column 
(Fig.  4a). We considered both the case of a perfectly 
straight column (i.e., a = 0 ) and one with a small geometric 
imperfection (i.e., a = 0.02L ). To ensure stability and to 
prevent rigid-body motion, the bottom end was fixed, and a 
rigid compressing plate was used at the top of the column 
to apply a downward force with a constant speed, v0 . To 
apply these boundary conditions, the bottom material points 
(shown in blue in Fig. 4) are fixed in place (zero velocity), 
while the top material points (also shown in blue in Fig. 4) 
are moved downward at a constant speed. These boundary 
material points have a significantly higher density (by a 
factor of 106 ) compared to those of the column to prevent 
interpenetration between the compressing plates and the 
column. This approach ensures consistent and controlled 
loading conditions across all simulations.

We considered two loading speeds, v0 = 100 mm/s and 
50 mm/s, to study their influence on the predicted buckling 
response. The columns are made of a linearly elastic 
material with Young’s modulus, E = 10 MPa—close to 
that of the base material described in Sect. 3.2. The cell 
size for the buckling simulations is 0.2 mm, while the initial 
particle spacing is 0.1 mm.5 Moreover, the numerical models 
consider a mass density of � = 6�0 , where �0 = 1.05 × 10

3 
kg/m3 is the density reported on the technical datasheet of the 
base material. This density increase is not expected to alter 
the buckling response because a quasi-static deformation is 
independent of the material density. Numerically, the density 
increase enables us to reduce the wave speed, consequently 
enabling a larger time step size, which in turn reduces 
computation time.6

Figure 4a illustrates the problem setup and boundary con-
ditions. Figure 4b and c depict the sequence of deformations 
for the 2.4 mm and 1.6 mm cases, respectively. Figure 4b 
shows the deformed shape when no imperfections are con-
sidered, while Fig. 4c shows the deformed shape when an 
initial geometric imperfection of a = 0.02L is considered.

Figure 5 shows all the numerical results obtained with 
the DDMP and GIMP methods alongside the theoretical 

4 The initial geometric imperfection is added solely to trigger 
a smooth buckling response. Thus, the initial imperfection, 
u0 = asin(�z∕L) , is not meant to represent a buckling shape or 
eigenmode [38]. While the sinusoidal shape was selected, other 
forms, such as a parabolic imperfection, could also be employed to 
achieve similar results [39–41].
5 A mesh resolution convergence study was performed that varied the 
cell size from 0.64 mm to 0.1 mm. The results from this are shown in 
Fig. 5c.
6 Both the GIMP and DDMP codes use explicit time integration for 
dynamic analysis. In this context, the quasi-static problems simulated 
herein are approached as dynamic problems with a low loading rate.
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values corresponding to the Euler buckling loads for the 
two different diameters. As observed, when no geometric 
imperfection is considered (i.e., a = 0 ), both methods 
overpredict the critical load (Fig. 5a, b). In these cases, 
the columns eventually buckle and oscillate around the 
theoretical critical load. This behavior is attributed to 
numerical roundoff errors inherent in any numerical model. 
In an ideal scenario with no numerical errors, the columns 
would compress infinitely without buckling. However, since 
numerical errors are inevitable, they introduce the instability 
that leads to the observed buckling behavior. As shown in 
Fig. 5a, b, the overprediction of the DDMP models exhibits a 
closer trend to the Euler load after buckling onset, while the 
GIMP predictions deviate more significantly. Similar results 
were observed for the 2.4 mm diameter cases but have been 
omitted from Fig. 5a, b for clarity.

As shown in Fig. 5c, d, when a small geometric imper-
fection is introduced (i.e., a = 0.02L ), the results from both 
methods approach the theoretical critical buckling load. 
For the 1.6 mm case, both the DDMP and GIMP methods 
closely approximate the theoretical critical load, but they 
slightly overestimate it for the 2.4 mm case. This overestima-
tion is not unexpected, as Euler’s theory does not account 
for factors such as inertia or the finite thickness of the col-
umn. Additionally, as shown in Fig. 5d, reducing the speed 
to v0 = 50 mm/s brings the results even closer to the theo-
retical critical load for both methods, as lower speeds better 
approximate quasi-static loading conditions.

To further verify our MPM results, we also performed 
finite element buckling simulations using ANSYS. We 
focused on the 2.4 mm case and considered an initial veloc-
ity of v0 = 100 mm/s and a = 0.02L . The material was 
modeled as linear elastic, using the properties described 

previously. The column was discretized with four-node 
tetrahedral elements, fixed at the base, and subjected to 
a velocity boundary condition at the top in the negative z 
direction. Lateral movement in the xy-plane was constrained, 
allowing only vertical displacement of the top surface. As 
shown in Fig. 5e, the load vs. displacement results from the 
FEM simulations align closely with those obtained using 
the DDMP method.

In addition to displaying the finite element results, Fig. 5e 
also displays the results of a cell size convergence analysis 
performed using the DDMP method. This analysis com-
pares the results obtained for cell sizes of 0.1 mm, 0.2 mm, 
0.4 mm, and 0.64 mm, where the latter is the cell size used 
for the full lattice models, as discussed later in this manu-
script. Our findings indicate minimal differences between the 
0.1 mm and 0.2 mm cases. While the 0.4 mm and 0.64 mm 
cases slightly underestimate the results compared to the finer 
resolutions, the overall behavior remains consistent across 
all tested scales.

The findings discussed in this section confirm the ability 
of both the DDMP and GIMP methods to predict the buck-
ling response of slender members, thereby instilling confi-
dence in their ability to simulate the response of complex 
lattice structures undergoing buckling.

5  Validation of GIMP and DDMP results 
for tetrahedral lattice structures

In this section, we employ the DDMP and GIMP methods 
to simulate the quasi-static response of the lattice structures 
depicted in Fig. 2 and compare the simulated results against 

Fig. 4  Buckling behavior of two slender columns obtained with the 
DDMP method: (a) column geometry and boundary conditions; 
(b) DDMP model of progressive deformation of a column without 
initial geometric imperfection ( a = 0 ) and diameter t = 2.4 mm at 

different top displacements, utop ; and (c) DDMP model of progressive 
deformation of a column with initial geometric imperfection 
( a = 0.02L ) and diameter t = 1.6 mm at different top displacements, 
utop
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Fig. 5  Comparative load–displacement curves from buckling analysis 
of slender columns. (a), (b) DDMP vs. GIMP results for v0 = 100 
mm/s (a) and  v0 = 50 mm/s (b) for the unperturbed case a = 0 , (c), 
(d) DDMP vs. GIMP results for  v0 = 100 mm/s (c) and  v0 = 50 

mm/s (d) for the perturbed case a = 0.02L , (e) DDMP results from 
cell size analysis and FEM results for column with t = 2.4  mm and 
v0 = 100 mm/s
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the experimental results discussed previously. Initially, we 
provide a description of the DDMP and GIMP lattice mod-
els, followed by a comparison between the numerical and 
experimental results. At the end of this section, we discuss 
results from additional lattice models that account for vari-
ous types of geometric imperfections, herein referred to as 
perturbations. These additional models aim to explain dis-
crepancies observed between the results obtained with the 
original set of models and the experimental results.

5.1  Simulation model set up

In this section, we present details of the DDMP and GIMP 
models of the lattice structures discussed in Sect. 3. Figure 6 
illustrates a representative numerical model featuring a 
lattice structure fixed at the bottom and a compressing plate 
located at the top. The compressive plate moves downward 
at a constant speed of v0 = 100 mm/s. A layer of record 
points is specified at the base to measure the reaction force 
during each simulation. We subdivided the models into 
grid cells in the xyz space with spacing of 0.64 mm in each 
direction. Each cell is assigned two material points along 
each direction, resulting in a total of eight material points 
within a cell when initially filled with material.

As discussed in the previous section, we also adopted a 
mass density of � = 6�0 , with �0 = 1.05 × 10

3 kg/m3 for the 
lattices to reduce the overall computation time. We assumed 
a linear elastic material model for the lattice. Herein, we 
considered two different values for the Young’s modulus 
( E = 8 MPa and E = 10 MPa) and treated the flyer as a 
rigid body with a significantly higher density than that of 
the lattice (similar to the buckling simulation discussed in 
the previous section). A zero-velocity boundary condition 
was applied to the bottom of the lattice structures. In our 
DDMP simulations, we computed the reaction force using 
the method discussed in [37]. Conversely, for the GIMP 
simulations, we measured the reaction force by averaging 

the stress along the bottom layer of material points, labeled 
as record points in Fig. 6.

5.2  Numerical results for lattices without initial 
geometric imperfections

Figure 7 compares the numerical results obtained with the 
DDMP and GIMP models to the range of experimental 
results for the six lattice structures discussed in Sect. 3. As 
observed in the figure, the load–displacement responses 
predicted by both DDMP and GIMP models approximate 
those measured experimentally for most of the lattices, up 
to a displacement of approximately u = 5 − 10 mm. Beyond 
this point, the numerical and experimental results differ 
in most of the cases. As Fig. 7 shows, for the T1 lattices, 
the results obtained with E = 10 MPa better approximate 
the experimental load–displacement response than those 
obtained with E = 8 MPa. Moreover, for the T2 lattices, 
the results obtained with E = 10 MPa capture the peak load 
better, while those obtained with E = 8 MPa better capture 
the post-peak response. These results suggest that a Young's 
modulus of E = 10 MPa provides a better approximation 
of the initial part of the curves up to the peak load, but 
significant differences are observed in the post-peak regime 
due to the potential interaction between geometrical and 
material instabilities (beyond the scope of this paper).

In an attempt to understand the discrepancies between 
the numerical and experimental results observed in Fig. 7, 
we considered a representative lattice structure and 
compared the deformed shapes obtained from the DDMP 
and GIMP models with those obtained experimentally. 
Figure 8 shows such a comparison for the T2P30 lattice at 
three displacement levels: u = 0, 10 mm, and 20 mm. A 
comparison of the numerical and experimental results for 
the remaining lattice structures is provided in Figs. S11–S16. 
As shown by the results, both numerical models can capture 
the deformation pattern accurately at u = 10 mm. However, 

Fig. 6  Schematic representation 
of a tetrahedral lattice model 
(T2P30) using the DDMP or 
GIMP methods
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at u = 20 mm, most unit cells have buckled in different 
ways, resulting in discrepancies between the experimental 
and the numerical results. A notable discrepancy emerges 
at the top layer of the lattice (i.e., the layer of unit cells in 
contact with the top plate), which tends to tilt to the right 
in the experiments, whereas this effect is less pronounced 
in the numerical models. These differences, which may be 
attributed to initial imperfections in the lattices that occurred 
during 3D printing, may explain the differences between the 
load–displacement results discussed earlier. Despite these 
discrepancies, our numerical models effectively capture the 
different deformation patterns observed in the experiments, 
even though we did not account for the interaction between 
geometric and material nonlinearities.

5.3  Numerical results for lattices with initial 
geometric imperfections

The numerical results discussed in the previous section 
assume the lattices are free of initial geometric imperfec-
tions. However, this assumption leads to inaccuracies in 
predicting deformation patterns at higher deformation lev-
els, as seen in Fig. 8. These inaccuracies are reflected in an 

overestimation of the load in the post-peak regime, as illus-
trated in Fig. 7. Visual inspection of our 3D-printed lattices 
revealed that some geometric imperfections occurred during 
3D printing. These imperfections, which are often mani-
fested in the form of curved members, may trigger specific 
deformation responses when the lattices undergo loading. 
However, such responses cannot be accurately captured by 
the numerical models unless they also consider initial imper-
fections. Due to our inability to precisely measure the geo-
metric imperfections beyond qualitative assessments from 
visual inspections, this section uses the DDMP and GIMP 
methods to explore how different types of geometric imper-
fections, herein referred to as perturbations, could affect the 
global response of the lattice structures.

Figure 9 presents a schematic illustration of the base lat-
tice configuration along with four types of perturbations 
considered in this section. Three additional types of pertur-
bations were also considered, but they had a negligible effect 
on the results. Description of these additional perturbations, 
alongside numerical results obtained with the DDMP mod-
els, can be found in the supplementary information (refer 
to Figs. S17–S18). As seen in the base configuration, the 
structure consists of five vertical layers of unit cells, each 

Fig. 7  Load–displacement curves obtained using the GIMP and DDMP methods for the two different Young’s moduli, E = 8 MPa and E = 10 
MPa, with the T1PY lattices (top) and T2PY lattices (bottom)
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layer containing a 5 × 5 arrangement of unit cells perpen-
dicular to the compression direction, and two base regions, 
representing the top and bottom plates added for testing, 
and the compressing plate.7 A zoomed-in view of the base 
material point configuration highlights the perfectly aligned 
material points before introducing any perturbation. As in 
the previous simulations, the cell spacing is 0.64 mm, and 
the material point spacing is 0.32 mm. The perturbations 
affect only the lattice structure and the base regions, while 
the compressing plate remains unperturbed in all variations. 
In this section, we only considered the T1P40 lattice. Each 
of the perturbations is described as follows:

• Perturbation A—slanted top layer. The first type of per-
turbation involved slanting the top (fifth) layer of the lat-
tice structure to investigate the induction of the buckling 
mode observed in Fig. 8. The total slant for the top layer 
was 1.28 mm (twice the cell size).

• Perturbation B—slanted lattice. The second type of per-
turbation involved slanting the entire lattice in a direc-
tion perpendicular to the compression direction, based 
on visual observations of the 3D-printed samples, which 
showed a slight inclination ranging from 1.0 mm to 

1.5 mm. To reflect this, a total slant of 1.28 mm was 
applied in the simulation, representing twice the cell size 
and falling within the observed range of the fabricated 
lattices. This perturbation aimed to investigate the effect 
of such inclination on the lattice behavior.

• Perturbation C—curved top base. The third type of per-
turbation introduced initial curvature in the top base, 
inspired by experimental observations of detachment 
between the compression plate and the top base (see 
Fig. 8a). The curvature is such that the maximum detach-
ment distance between the compression plate and the top 
base structure was 1.28 mm.

• Perturbation D—bowed lattice. The fourth type of per-
turbation simulated bowing of the lattice, accounting 
for minor deviations in manufacturing alignment due to 
gravity. The bowing was designed to produce a maximum 
imperfection of 1.28 mm at the midpoint between the top 
and bottom bases.

Figure 10 shows the load–displacement results obtained 
with the DDMP and GIMP methods from the models 
considering the perturbation cases applied to the T1P40 
lattice. As observed from the figures, up to a displacement 
of 15 mm, all perturbations have a minimal impact on the 
load–displacement response. However, as the deformation 
increases, perturbations can significantly affect the post-peak 

Fig. 8  Progressive deformation of the T2P30 lattice at three different displacement levels: u = 0, 10, and 20 mm. (a) Experimental results, (b) 
results from the DDMP method, and (c) results from the GIMP method

7 The base configuration essentially corresponds to the schematic 
model shown in Fig. 6.
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response. These perturbations correspond to either larger-
scale imperfections that arise during the printing of the 
entire lattices (perturbations A, B, and D) or issues that arise 
during the experiments, as in perturbation C. Larger-scale 
perturbations can either increase the force displacement 
response as in perturbation C, or decrease the response, as 
in perturbation D. These perturbations alter the buckling 
modes, affecting the post-buckling response of the entire 
lattice. By introducing larger-scale imperfections and 
defects, the numerical models better capture the post-peak 
response and buckling modes, resulting in a closer match to 
the behavior of the actual lattices.

Although accounting for initial geometric imperfections 
helped align our numerical results more closely with the 
experimental ones, Fig. 10 still shows considerable differ-
ences between the numerical and experimental results. One 
probable factor influencing the accuracy of our numerical 
results is the assumption that the base material exhibits a 
linear elastic behavior. While we acknowledge that incorpo-
rating material nonlinearities (e.g., a hyperelastic material 
model) and/or viscoelasticity may improve the approxima-
tion of the experimental responses, exploring these aspects 
falls beyond the scope of the current study.

6  Engineering representative lattice 
structures with verified and validated 
codes

Following the quasi-static simulations, we conducted 
dynamic simulations to investigate the response of the lat-
tice structures under impact loading. The computational 
models created in this section are based on the lattice 
geometries depicted in Fig. 2. The lattices are impacted by 
a rigid, 10-kg flyer, traveling at 2 m/s downward when it 
begins to impact the lattices. The velocity of the flyer during 
impact is affected by the resistance of the lattice structure 
and gravity ( g = 9.81 m/s2), providing a realistic represen-
tation of dynamic loading conditions. Due to the dynamic 
nature of the simulations, the actual density of the mate-
rial ( �0 = 1.05 × 10

3 kg/m3) was used for the lattice. Two 
Young’s moduli are considered ( E = 10 MPa and E = 100 
MPa), and the Poisson’s ratio is taken as v = 0.4 , in order 
to investigate the effect of material properties on the energy 
absorption of the lattices under large, dynamic deforma-
tions. Understanding the energy absorption of these struc-
tures would allow one to tune these metamaterials to specific 
applications. The following discussion aims to provide an 
initial insight into the potential of using tetrahedral lattice 
structures for impact resistance applications. Additionally, 
numerical simulation results for cases in which the lattices 
undergo complete densification should be interpreted with 

Fig. 9  Base lattice configuration along with four different types of perturbations (A–D) considered for the imperfection analysis



Engineering with Computers 

caution, particularly after rebound, as none of the models 
directly account for frictional contact. 

Figures 11a, b and 12a, b display the time responses of 
the load as obtained with the DDMP and GIMP methods 
for the different lattice structures. In the cases of soft 
lattices ( E = 10 MPa with t = 1.6 mm and t = 2.4 mm) 
and thin, stiff lattices ( E = 100 MPa and t = 1.6 mm), a 
sharp peak appears in the curves. However, for the stiff, 
thick lattices ( E = 100 MPa and t = 2.4 mm), a plateau 
precedes the formation of a more gradual peak. The peaks 
occur as the lattice structures nearly reach complete 
densification, with individual unit cells deforming and 
coming into contact with each other. In other words, the 
lattice structures have completely folded into the empty 
space between the top and bottom of the lattice. For the 
thicker and stiffer lattices (i.e., those corresponding to 
E = 100 MPa and t = 2.4 mm), although they still undergo 
a large deformation and begin to densify, their increased 
stiffness enables them to absorb the energy of the flyer 
before they begin to push it back upward.

For the cases where the lattice completely folds upon 
itself, the flyer speed drops sharply before increasing again 
as the flyer changes direction, which occurs between 15 and 
25 ms depending on the lattice, as shown in Figs. 11c, d 
and 12c. However, for the stiff, thick lattices, as shown in 
Fig. 12d, the flyer speed decreases gradually between 0 and 
15 ms, after which the speed decreases rapidly.

Both DDMP and GIMP models exhibit sharp peaks in 
the load, particularly in the softer cases, with most of the 
DDMP peaks being higher and occurring slightly earlier 
than the GIMP peaks. Although both methods initially dis-
play similar characteristics for the stiffest case (Fig. 12b) 

at early times (below ~ 15 ms), they start to diverge as time 
progresses. One possible explanation for these differences 
could be how DDMP and GIMP handle buckling, as shown 
by the numerical results in Sect. 4. Another possible expla-
nation could be that as the lattices undergo large deforma-
tions, the individual struts begin to come into contact with 
one another. Since DDMP and GIMP have different sup-
port regions for a node, contact between two struts may 
occur earlier in the DDMP due to its larger support region 
compared to GIMP. Moreover, unless contact and friction 
between individual lattice struts are explicitly modeled, an 
unphysical “stickiness” begins to occur when the struts come 
into contact since nonslip contact is inherent in the MPM. 
This artifact arises due to the interpolation of particle infor-
mation onto the grid, as a grid node does not differentiate 
between interpolated data coming from separate struts, and 
thus it should be handled differently. During the quasi-static 
tests, no significant slip was observed between the struts 
as they contacted each other, which suggests that allowing 
the struts to artificially stick to one another may yield rea-
sonable results, at least until the lattices begin to rebound. 
Previous studies [20, 23, 33, 34] have proposed methods 
such as multi-mesh or penalty methods to explicitly han-
dle contact within the MPM. Although these methods are 
out of the scope of the present study, our team is actively 
exploring this research area for further improvements in our 
modeling capabilities. Moreover, we are exploring ways of 
incorporating further material and geometric nonlinearities 
to improve the predictive capabilities of our DDMP and 
GIMP frameworks.

Fig. 10  Load–displacement curves obtained from the geometric imperfection analysis of the T1P40 lattice: (a) DDMP results and (b) GIMP 
results
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7  Concluding remarks and future research 
tasks

In this study, we have examined the potential of the DDMP 
and GIMP methods for developing a computational frame-
work tailored to engineering lattice structures subjected 
to extreme loading conditions. As a first step toward this 
general objective, we simulated the behavior of several tet-
rahedral lattice structures under quasi-static loading and 
compared the numerical results against those obtained 
experimentally. Interestingly, the results reveal that both the 
DDMP and GIMP methods are able to capture the experi-
mental load–displacement responses in the pre-buckling 
regime but start to deviate from the experimental data in 
the post-bucking regime. By comparing the deformed shapes 

predicted by the numerical models with those observed from 
the experiments, we could conclude that both the DDMP and 
GIMP methods are robust in capturing the deformed shapes 
before individual strut buckling occurs.

Based on visual inspection of the lattices tested experi-
mentally, it appears that the most likely source of discrep-
ancy between the numerical and experimental results is 
due to initial geometric imperfections that arise during 3D 
printing. In an attempt to quantify the effects of initial geo-
metric imperfections, we created a second set of numerical 
models accounting for different types of perturbations (i.e., 
imperfections) that reflect experimental observations. The 
perturbations considered here include slanting either the 
top layer of the lattices or the entire lattice structures, and 
applying initial curvatures at the top of the lattice or across 
the lattice height. The results obtained from the perturbed 

Fig. 11  Dynamic responses of the T1P20–T1P40 lattices obtained with the DDMP and GIMP methods for different values of the Young’s 
modulus, E : (a), (b) load vs. time response, (c), (d) speed vs. time response, and (e), (f) flyer total energy vs. time
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models indicate that initial geometric imperfections have a 
negligible effect on the pre-bucking response, but may have 
a significant effect on the post-buckling response.

Using the GIMP and DDMP codes verified and vali-
dated in the quasi-static loading cases, we then analyzed 
the responses of the lattice structures under dynamic load-
ing. For the dynamic loading cases, we considered two 
types of materials, namely, a soft material with a Young’s 
modulus of 10 MPa (similar to the Young’s modulus meas-
ured for the base material in the quasi-static models) and 
a stiff material with a Young’s modulus of 100 MPa. This 
allowed us to evaluate the effect of the Young’s modu-
lus on the dynamic response of the lattice structures. The 
numerical results indicate that, for the selected impact 
speed and flyer mass, stiffer lattices generally lead to a 
reduction in the peak load experienced during impact as 

compared to softer lattices. In addition, as the lattice stiff-
ness increases, not only does the peak load decreases, but 
also the speed of the flyer varies more gradually during 
impact. Our recent investigation via molecular dynamics 
has demonstrated that architected materials could signifi-
cantly affect the damage evolution in protected targets 
under impact [42]. The current work further motivates the 
need for multiscale modeling and evaluation of metama-
terials under impact loading, for which particle methods 
appear to be robust in spatial discretization in combination 
with image processing.

We acknowledge that our modeling framework has cer-
tain limitations. For example, our models assume linear elas-
tic material behavior, and frictional effects are not explicitly 
considered when structs come into contact. While material 
nonlinearities, inelastic material behavior, detailed contact 

Fig. 12  Dynamic responses of the T2P20–T2P40 lattices obtained with the DDMP and GIMP methods for different values of the Young’s 
modulus, E : (a), (b) load vs. time response, (c), (d) speed vs. time response, and (e), (f) flyer total energy vs. time
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formulations, and interactions between material and geomet-
ric instabilities are beyond the scope of this study, this work 
lays the groundwork for applying particle-based methods in 
engineering lattice structures under extreme loading condi-
tions. Future research will focus on enhancing the proposed 
computational framework and experimental techniques by 
addressing the above issues.

Supplementary Information The online version contains 
supplementary material available at https:// doi. org/ 10. 1007/ 
s00366- 024- 02098-5.
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