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Abstract
We present PolyStress, a Matlab implementation for topology optimization with local stress constraints considering
linear and material nonlinear problems. The implementation of PolyStress is built upon PolyTop, an educational
code for compliance minimization on unstructured polygonal finite elements. To solve the nonlinear elasticity problem,
we implement a Newton-Raphson scheme, which can handle nonlinear material models with a given strain energy
density function. To solve the stress-constrained problem, we adopt a scheme based on the augmented Lagrangian
method, which treats the problem consistently with the local definition of stress without employing traditional constraint
aggregation techniques. The paper discusses several theoretical aspects of the stress-constrained problem, including details
of the augmented Lagrangian-based approach implemented herein. In addition, the paper presents details of the Matlab
implementation of PolyStress, which is provided as electronic supplementary material. We present several numerical
examples to demonstrate the capabilities of PolyStress to solve stress-constrained topology optimization problems and
to illustrate its modularity to accommodate any nonlinear material model. Six appendices supplement the paper. In particular,
the first appendix presents a library of benchmark examples, which are described in detail and can be explored beyond the
scope of the present work.
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1 Introduction

Nineteen Eighty-Eight: that is when the landmark paper by
Bendsøe and Kikuchi (1988) was published, which led to the
creation of the modern framework for the field of topology
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optimization. Moreover, later on, Prof. Bendsøe wrote THE
book (Bendsøe 1995), which served as an invitation to new
researchers to the field by providing a unified presentation
of methods for the design of topology, shape and material
for continuum and discrete structures. As a result, THE
book had a major impact in promoting and advancing the
field. Inspired by Bendsøe’s open scientific spirit, we hope
that this paper and its associated software (PolyStress)
will serve as an invitation for other researchers to investigate
stress constrained topology optimization by means of a local
approach, consistent with continuum mechanics.

This paper belongs to a series of educational computer
codes written in Matlab for topology optimization on
unstructured polygonal finite element meshes (Talischi
et al. 2012a; 2012b; Pereira et al. 2016; Sanders et al.
2018). The first paper in the series is PolyTop (Talischi
et al. 2012b), which was designed to solve compliance
minimization problems on unstructured polygonal finite
elements. The Matlab code developed for the polygonal
mesh generation was presented in a companion code called
PolyMesher (Talischi et al. 2012a). Owing to the modular
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structure of PolyTop, it is possible to modify either the
topology optimization or the analysis routines to solve a
variety of topology optimization problems. One example
is PolyFluid (Pereira et al. 2016), in which a few
modifications to the analysis routine led to a topology
optimization code for power dissipation in Stokes flow.
Another example is PolyMat (Sanders et al. 2018), which
was conceived by modifying PolyTop to solve compliance
minimization problems for multi-material structures with
possibly many volume constraints.

In this paper, we use the general structure of PolyTop
in order to develop PolyStress, a Matlab code for
topology optimization problems with local stress constraints
considering material nonlinearities. To solve the stress-
constrained problem, we exploit the modular structure
of PolyTop and modify the optimization routine in
order to implement the augmented Lagrangian (AL)
method (Bertsekas 1999; Nocedal and Wright 2006). This
method allows us to solve the stress-constrained problem
consistently with the local definition of stress with no need
to use constraint aggregation techniques. Additionally, we
replace the standard finite element (FE) analysis routine
by a Newton-Raphson scheme, which we use to solve for
the state equations considering material nonlinearities. We
write the nonlinear FE code in a modular way, such that any
material model can be incorporated into it.

This paper is motivated by the pioneering contributions
of Prof. Martin P. Bendsøe to the field of computational
design optimization and applied mathematics (Bendsøe
1989). For example, the paper by Duysinx and Bendsøe
(1998) maintains “the local nature of constraints,” which is
the consistent approach followed in this work.

The remainder of this paper is organized as follows.
Section 2 presents the stress-constrained topology optimiza-
tion problem in a continuum setting and the discretization
of the problem is discussed in Section 3. Details on the AL
method and, in particular the AL-based formulation imple-
mented in this study, are introduced in Section 4, followed
by a discussion on the sensitivity analysis in Section 5.
We discuss the Matlab implementation of PolyStress
in Section 6, followed by several examples in Section 7.
We finalize the paper with some concluding remarks in
Section 8. Afterwards, we provide several appendices, such
that the first provides a library of benchmark examples and
the rest focus on the key parts of the Matlab code.

2 Topology optimization problem
in a continuum setting

In this section, we introduce the formulation for topology
optimization with local stress constraints in a continuum
setting. First, we describe the classical continuum topology

optimization problem for general objective and constraint
functions. Afterwards, still in a continuum setting, we focus
on the stress-constrained problem and introduce both the
problem statement and the stress constraint definition that
we discretize in the subsequent section to solve stress-
constrained topology optimization problems. We conclude
the section with a discussion on the definition for stress
constraints that we adopt here, which we refer to as the
polynomial vanishing constraint.

2.1 The general optimization problem

In a general (two-dimensional) topology optimization
problem, we aim to find the shape, ω ⊆ R

2, of a structure,
such that a given objective function, f (ω,uω), is minimized
and some constraints, gj (ω,uω) ≤ 0, j = 1, . . . , K , are
satisfied. The shape, ω, is usually defined on an extended
domain, �, such that ω ⊆ � ⊆ R

2 (see Fig. 1). In general,
both the objective function and constraints depend on the
shape of the structure, ω, and on the solution, uω, of a
boundary value problem.Mathematically, such optimization
statement is written as:

inf
ω∈O

f (ω,uω)

s.t. gj (ω,uω) ≤ 0, j = 1, . . . , K,
(1)

where O represents the space of admissible shapes and,
for the purpose of this discussion, uω ∈ Vω satisfies the
variational problem of nonlinear elasticity:

uω = inf
u

�ω(u), with

�ω(u) =
∫

ω

W0(u, x)dx −
∫

�̃N

t · udS, (2)

where

Vω =
{
u ∈ H 1(ω,R2) : u|∂ω∩�D

= 0
}

(3)

Fig. 1 Extended design domain and boundary conditions (adapted
from Talischi et al. (2012b))
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is the space of admissible displacements, �ω(u) is the total
potential energy of the system, W0(u, x) is the strain energy
density of the solid material from which the shape ω is
made, �D and �N form a partition of ∂�, and t are the
non-zero tractions applied on �̃N ⊆ �N .

In order to use typical discretization techniques and
optimization algorithms to solve the optimization problem
(1) together with the variational problem (2), it is convenient
to recast (2) on � by introducing a characteristic function
χω associated with ω, as follows:1

uω = inf
u

�(u), with

�(u) =
∫

�

χωW0(u, x)dx −
∫

�̃N

t · udS, uω ∈ V, (4)

where the set of admissible displacements, V , is given by

V =
{
u ∈ H 1(�,R2) : u|�D

= 0
}

, (5)

which, unlike (3), is independent of ω. This way of writing
the problem allows to define the shape ω on an admissible
space, AO = {χω : ω ∈ O}.

Because the admissible space given by AO is not a
vector space, the solution of the optimization statement
(1) becomes an integer programming problem, which is
computationally too expensive to solve in practice. As a
means of solving the optimization problem, a continuous
parametrization, ρ ∈ [0, 1], of the shape is introduced.
We interpret ρ as a density function that can take values
in the interval [0, 1]. To recover the binary nature of the
optimization problem, it is typical to use a penalty function
such as the solid isotropic material with penalization (SIMP)
(Bendsøe 1989; Zhou and Rozvany 1991; Rozvany et al.
1992). Using a continuous parametrization based on the
SIMP method, the boundary value problem (4) takes the
form:

u = inf
u

�(ρ,u), with

�(ρ,u) =
∫

�

[ε + (1 − ε)ρp]W0(u, x)dx

−
∫

�̃N

t · udS, u ∈ V, (6)

where p > 1 is a penalization factor.
The direct use of a continuous parametrization, ρ, to

solve (1) does not render it a well-posed problem. To
enforce its well-posedness, we indirectly impose regularity
on the space of admissible designs by means of a
regularization map PF , such that ρ = PF (η), in which
η is the design function. Using this technique allows ρ to

1The characteristic function, χω, is defined such that χω = 1 if x ∈ ω

and χω = 0 otherwise. In practice, however, we use an Ersatz material
model to guarantee the existence and uniqueness of the solution of the
boundary value problem. That is, in regions where χω = 0, we use
ε + (1 − ε)χω, in which ε � 1 is the Ersatz parameter.

inherit the smoothness characteristics of the kernel, F , used
to define PF . In particular, the regularization map is defined
by a convolution of the design function, η, with a smooth
kernel, F , and it is obtained as follows (Bourdin 2001;
Borrvall and Petersson 2001):

PF (η)(x) =
∫

�

F(x, x̄)η(x̄)dx̄. (7)

Here, we adopt the nonlinear kernel of radius R:

F(x, x̄) = c(x)max

(
1 − ‖x − x̄‖

R
, 0

)q

, (8)

where c(x) is a normalization coefficient that is chosen such
that:∫

�

F(x, x̄)dx̄ = 1. (9)

In (8), q ≥ 1 is a filter exponent that, if chosen equal to 1,
leads to the traditional linear hat kernel.

As discussed by Talischi et al. (2012b), we can apply
other layout or manufacturing constraints on the admissible
shapes (e.g., extrusion, pattern repetition, or gradation) by
introducing an operator Ps(η(x)) defined on � that maps
function η(x) according to the desired behavior. Here, we
focus on using Ps(η(x)) to impose symmetries to the set
of admissible shapes. For example, if we want to impose
symmetry with respect to the x1-axis, Ps(η(x)) takes the
form:

Ps(η(x)) = η(x1, |x2|) (10)

and if we want to impose symmetry with respect to the
x2-axis, Ps(η(x)) takes the form:

Ps(η(x)) = η(|x1|, x2). (11)

When imposing symmetries, we need to combine both
symmetry and filtering approaches and define the space of
admissible density fields so that ρ ∈ A, in which:

A = {
P(η) : η ∈ L∞(�; [0, 1])} , with P(η) = (PF ◦ Ps )(η).

(12)

As we discuss in Appendix B, we modify the subroutine
PolyFilter used in PolyTop to compute the filter
operator and add the ability to impose symmetries about
either the x1-axis, the x2-axis, or both.

In summary, a topology optimization problem written in
terms of a continuous parametrization, ρ, (i.e., in terms of a
density field), has the following general form:

inf
ρ∈A

f (ρ,u)

s.t. gj (ρ,u) ≤ 0, j = 1, . . . , K,

(13)
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where the space of admissible density fields is defined in
(12) and the displacement field, u, solves the variational
problem:

u= inf
u

�(ρ,u), with

�(ρ,u)=
∫

�

mE(ρ)W0(u, x)dx−
∫

�̃N

t · udS, u∈V, (14)

where mE(ρ) is a material interpolation function used to
compute the stiffness at a point based on the density at
that point (e.g., mE(ρ) = ε + (1 − ε)ρp when SIMP is
used). In a similar way as mE(ρ) is used to compute the
stiffness at a point, different interpolation functions can be
used for different physical quantities. For instance, if the
physical quantity of interest is the volume fraction at a point,
we can define a volume interpolation function of the form
mV (ρ) = ρ to determine the volume fraction at a point
based on the density at that point.2 The volume interpolation
function can be used, for instance, to determine the volume
fraction of a structure defined on �:

f (ρ) = 1

|�|
∫

�

mV (ρ)dx. (15)

Function f (ρ) measures the ratio of the volume of a
structure with respect to the volume, |�|, of the entire
domain in which the structure is defined. As we shall
discuss later, that is precisely the objective function that
we use in our mass minimization, topology optimization
problem with local stress constraints.

2.2 The stress-constrained problem

A typical stress-constrained topology optimization problem
aims to find the lightest structure which can withstand
the applied loads, without material failure at any point of
the domain. To limit the stress at points xj ∈ �, we
impose material failure constraints of the form gj (ρ,u) ≤
0, j = 1, . . . , K . Thus, in a continuum setting, this type of
optimization problem is expressed as:

inf
ρ∈A

f (ρ) = 1

|�|
∫

�

mV (ρ)dx

s.t. gj (ρ,u) ≤ 0, j = 1, . . . , K

with: u = inf
u

�(ρ,u), u ∈ V

�(ρ,u) =
∫

�

mE(ρ)W0(u, x)dx −
∫

�̃N

t · udS.
(16)

The objective function, f (ρ), represents the mass ratio
(volume fraction) of the structure, which is defined in
terms of a volume interpolation function, mV (ρ). In order

2As we will discuss later, we adopt a volume interpolation function
based on a threshold projection function (Wang et al. 2011), which
allows us obtain clear black-and-white designs.

to promote black-and-white designs, we adopt a volume
interpolation function based on the threshold projection
function (Wang et al. 2011):

mV (ρ) = tanh(βη) + tanh(β(ρ − η))

tanh(βη) + tanh(β(1 − η))
. (17)

In addition, we adopt a material interpolation function of the
form:3

mE(ρ) =
⎧⎨
⎩

ε + (1 − ε)[h(ρ)]p (SIMP)

ε + (1 − ε)
h(ρ)

1 + p0[1 − h(ρ)] (RAMP),

(18)

where h(ρ) = mV (ρ) is the volume fraction at a given point
x ∈ �.

2.3 Polynomial vanishing constraints

In theory, to prevent material failure from occurring at any
point xj ∈ �, we should impose stress constraints pointwise
(i.e., gj (ρ,u), ∀xj ∈ �), which comes from the local
definition of stress in classical continuum mechanics. In
practice, however, we choose a finite number of evaluation
points, K , such that the number of stress constraints
becomes finite. For instance, in a discretized setting, we
evaluate the stress constraints at the centroid of each finite
element, and thus, we choose K = N , in which N is
the number of elements in the finite element mesh. The
stress constraints, gj (ρ,u), adopted here, which we refer to
as polynomial vanishing constraints (Giraldo-Londoño and
Paulino 2020), are a variation of the traditional vanishing
constraints4 (Cheng and Jiang 1992) and are defined as:

gj (ρ,u) = mE(ρ)�j (�
2
j + 1), with �j = σv

j /σlim − 1,

(19)

where σv
j is the von Mises stress measured at evaluation

point xj ∈ � and σlim is the stress limit of the material.
The von Mises stress used to define gj (ρ,u) is based on
the Cauchy stress tensor computed from the strain energy
density of the solid material:

σ = ∂W0

∂ε
, (20)

where W0 is the stored energy density function of the solid
material and ε is the infinitesimal strain tensor.

As discussed by Giraldo-Londoño and Paulino (2020),
the benefits of using the polynomial vanishing constraint
are twofold. First, when σv

j /σlim � 1 (i.e., the constraint

3A similar approach is employed by Talischi et al. (2012b) when
considering the smooth Heaviside function by Guest et al. (2004).
4In the context of density-based topology optimization, the traditional
vanishing constraints can be written as gj (ρ,u) = ρ�j , with �j =
σv

j /σlim − 1
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Fig. 2 Comparison between the traditional vanishing constraint
(Cheng and Jiang 1992) and the polynomial vanishing constraint
(Giraldo-Londoño and Paulino 2020) as a function of �j . Values of
�j > 0 indicate stress constraint violation

is highly violated), constraint gj scales with (σ v
j /σlim −

1)3, thus driving the optimizer to a solution with lower
overall stress. Similarly, when σv

j /σlim → 1 (i.e., the
constraint is close to being satisfied), constraint gj scales
with (σ v

j /σlim − 1), thus preserving the characteristics
of the traditional vanishing constraint (Cheng and Jiang
1992). To emphasize these points, Fig. 2 compares the
traditional vanishing constraint and the polynomial van-
ishing constraint as a function of �j . The figure shows
that the polynomial vanishing constraint penalizes con-
straint violation more severely than the traditional vanishing
constraint, but behaves similarly to the traditional vani-
shing constraint when �j ≈ 0 (i.e., when σv

j /σlim → 1).
The main difference between the polynomial vanishing

constraint (19) and the traditional vanishing constraint is
the presence of the term �3

j . Although this cubic term
increases the stress constraint nonlinearity, we found no
adverse effect related to this nonlinearity when solving
all problems presented herein. In fact, we found that a
nonlinear penalization of stress violation is effective in
driving the solution toward a state of overall lower stress at a
faster pace than that achieved using a linear penalization of
stress violation, as it is the case for the traditional vanishing
constraint. Although not pursued in the present work, other
nonlinear penalization functions can be explored in lieu of
the cubic function used here.5

5For a reader interested in exploring a different nonlinear term (e.g.,
using �4

j instead of �3
j in (19)), the function PenalFnc located

inside the PolyStress.m file must be modified. An example of a
similar modification is provided later.

3 Discretization

As a means to solve the stress-constrained topology opti-
mization problem (16) numerically, we need to discretize
the design domain, which allows for the discretization of the
design space,A, and of the displacement field, V . Below, we
provide specific details on the discretization of these fields
and finalize with an explicit representation of the discretized
topology optimization problem with local stress constraints
that will lead to the implementation of PolyStress.

3.1 Discretized design space and filter operator

We discretize the design domain, �, using a fixed partition,
Th = {��}N�=1, corresponding to a characteristic mesh size
h, such that �k ∩ �� = ∅, ∀k �= � and ∪N

�=1�� = �. We
use partition Th to define a piecewise constant discretization
of the design space, A:

Ah = {
P(ηh) : 0 ≤ ηh ≤ 1, η|��

= const ∀�
}
. (21)

The discretized design function, ηh, is written as:

ηh =
N∑

�=1

z�χ��
(x), (22)

where χ��
is the value of the characteristic function for

element �� and z = {z�}N�=1 is the vector of design
variables.

In our implementation, the density field ρh is replaced
by another field ρ̃h that is also constant over each finite
element:

ρ̃h(x) =
N∑

�=1

y�χ��
(x), (23)

where y� are elemental values, which we define as the value
of ρh at the centroid, x∗

� , of element �, i.e., y� = ρh(x∗
�). As

discussed by Talischi et al. (2012b), this definition leads to
a discretization of the mapping P that we use to relate the
vectors of elemental values, y, and design variables, z, as:

y = Pz, (24)

where P is the filter matrix, which is interpreted as a discrete
counterpart of the mapping, P . For the case in which no
symmetries are imposed,

P�k =
∫

�k

F (x∗
�, x̄)dx̄ (25)

provides the components of the filter matrix, P. Using the
nonlinear kernel (8), we obtain the filter matrix

P�k = w�kvk

N∑
j=1

w�jvj

, (26)
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with

w�k = max

(
0, 1 − ‖x� − xk‖2

R

)q

, (27)

where R is the filter radius, ‖x� − xk‖2 is the distance
between the centroids, x� and xk , of elements � and k,
respectively, and q the filter exponent.

3.2 Discretized displacement field and solution
of state equations

Now, to solve the variational problem (14), we discretize
the displacement field, V , on the same partition Th defined
previously. The discretized variational problem aims to find
uh ∈ Vh = span{Ni}Mi=1 such that:

uh = inf
u

� (ρ,u), with

�(ρ,u) =
∫

�

mE(ρh)W0(u, x)dx −
∫

�̃N

t · udS, (28)

where {Ni}Mi=1 forms the basis of Vh and M is the number
of displacement degrees of freedom. Using a standard
finite element procedure, we approximate uh using shape
functions Ni :

uh =
M∑
i=1

UiNi (x). (29)

This way, the discretized variational problem (28) takes the
form:

U = argmin
U

� (z,U), with

�(z,U) =
N∑

�=1

∫
��

mE(y�)W0(u�, x)dx − Fext · U, (30)

where U = {Ui}Mi=1 is the vector of nodal displacements,

(Fext )i =
∫

�̃N

t · NidS (31)

are the design independent external nodal forces, and u�

is the vector of nodal displacements for element ��. The
equilibrium condition satisfying the discrete minimization
problem (30) is:

R = ∂�

∂U
= Fint − Fext = 0, (32)

where

(Fint )i =
∫

�

mE(ρh)σ · ∇Nidx (33)

=
N∑

�=1

∫
��

mE(y�)σ · ∇Nidx (34)

are the internal nodal forces, which are given in terms of the
Cauchy stress vector σ . The system of nonlinear equations
given by the equilibrium condition (32) is solved iteratively

using a Newton-Raphson scheme, for which we obtain the
consistent tangent matrix:

(KT )ij =
∫

�

mE(ρh)CT ∇Ni : ∇Njdx (35)

=
N∑

�=1

∫
��

mE(y�)CT ∇Ni : ∇Njdx, (36)

defined in terms of the material tangent moduli matrix, CT .

3.3 Discretized topology optimization problem
with stress constraints

Having discretized the design space, A, and the displace-
ment field, V , on �, the final discrete problem for topology
optimization with local stress constraints becomes:

min
z∈[0,1]N

f (z) = AT mV (y)

AT 1

s.t. gj (z,U) = mE(yj )�j (�
2
j + 1) ≤ 0,

j = 1, . . . , N

with: �j = σv
j /σlim − 1

U = argmin
U

�(z,U) =
N∑

�=1

∫
��

mE(y�)W0(u�, x)dx−Fext ·U (37)

where A = {|��|}N�=1 is the vector of element areas and
σv

j is the von Mises stress evaluated at the centroid, x∗
j ,

of element �j . The volume interpolation function, mV (·),
and the material interpolation function, mE(·), are evaluated
according to (17) and (18), respectively. The state variables
(i.e., the nodal displacements), U, are found via the finite
element method, as discussed previously. Note that the
topology optimization problem stated above imposes one
stress constraint per element, which is adequate when we
consider only one load case.6

4 Augmented Lagrangian framework

One of the main challenges in stress-constrained topology
optimization is the large number of stress constraints that
must be imposed in order to prevent material failure
at every evaluation point. In the discretized optimization
statement (37), the number of stress constraints, N , is

6When multiple load cases are considered, the number of stress
constraints becomes Nc = mN , in which m is the number of
load cases. The current implementation of PolyStress considers
one load case only, yet the interested reader can modify the code
accordingly to account for multiple load cases (details on the
implementation for multiple load cases can be found in a study by
Senhora et al. 2020).
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as large as the number of elements in the FE mesh. To
reduce the computational cost associated with handling so
many constraints, the most commonly used approach is to
aggregate the local stress constraints into a single global
constraint or a few clustered constraints (e.g., see Yang
and Chen 1996; Luo et al. 2013; De Leon et al. 2015;
Kiyono et al. 2016; Lee et al. 2016; Lian et al. 2017; Liu
et al. 2018; Xia et al. 2018; Fan et al. 2019; Le et al.
2010; Lee et al. 2012; Holmberg et al. 2013b). The final
designs obtained using these clustering techniques tend to
depend on the number of clusters, the number of elements
(stress evaluation points) used to define each cluster, and
the norm function used to estimate the maximum stress in
each cluster—e.g., the p-norm function (Park 1995) or the
KS function (Kreisselmeier and Steinhauser 1979). Not only
does the design depend on these choices, but depending
on the norm function, the stress limit is not satisfied
everywhere. Based on these observations, one could argue
that clustering (or aggregation) approaches are not suitable
for handling realistic design problems.

Instead of the aforementioned aggregation techniques,
an attractive approach to solve the discretized optimization
statement (37) while satisfying the stress constraints locally
is the AL method (Bertsekas 1999; Nocedal and Wright
2006). Several studies have used the AL method to solve
stress-constrained topology optimization problems (Pereira
et al. 2004; Fancello 2006; Emmendoerfer and Fancello
2014; 2016; Emmendoerfer et al. 2019; da Silva et al.
2018). In the AL method, the solution of a constrained
optimization problem such as (37) is obtained as the
solution of a series of unconstrained optimization problems,
each aiming to minimize the AL function, Lμ(z, λ), of
the original optimization problem. Specifically, at the k-
th step of the AL method, one solves the unconstrained
optimization problem:7

min
z∈[0,1]N

Lμ(k) (z, λ(k)) = f (z) + P (k)(z,U), (38)

where

P (k)(z,U) =
N∑

j=1

[
λ

(k)
j hj (z,U) + μ(k)

2
hj (z,U)2

]
(39)

is the penalization term. Moreover

hj (z,U) = max

[
gj (z,U), − λ

(k)
j

μ(k)

]
(40)

are equality constraints used to define P (k)(z,U), λ(k) =
{λ(k)

j }Nj=1 is a vector of Lagrange multiplier estimators, and

7Although we refer to the AL sub-problem (38) as unconstrained, it is
in fact an optimization problem with box constraints.

μ(k) > 0 is a quadratic penalty factor. The penalty factor is
typically updated as:

μ(k+1) = min
[
αμ(k), μmax

]
, (41)

where α > 1 is an update parameter and μmax an upper
limit used to prevent numerical instabilities. The Lagrange
multiplier estimators are updated as:

λ
(k+1)
j = λ

(k)
j + μ(k)hj (z(k),U). (42)

Without any sort of normalization, the AL method
discussed above is not suitable to solve large-scale stress-
constrained topology optimization problems. The reason is
that, as N becomes large, the penalization term, P (k)(z,U),
dominates over the objective function term, f (z), which
negatively impacts the convergence of the method. As
a means of alleviating this issue, Senhora et al. (2020)
introduced a normalization term to P (k)(z,U), so that the
normalized AL sub-problem becomes:

min
z∈[0,1]N

J (k)(z,U) = f (z) + 1

N
P (k)(z,U). (43)

The only difference between the original AL sub-problem
(38) and sub-problem (43) is that, in the latter, the
penalization term is normalized with respect to the number
of constraints, N . This normalization allows solving
problems with a large number of constraints without
experiencing numerical instabilities, which is why we adopt
this approach to solve the stress-constrained problem (37).
A similar strategy to normalize the AL function is presented
by da Silva et al. (2019a), in which the objective function
term is multiplied by the number of elements in the FE
mesh. Similarly, to improve the robustness of the AL
method, da Silva et al. (2019b) normalized both the initial
and the maximum penalty terms (i.e., μ(0) and μmax)
with respect to the number of elements, N . These studies
highlight the importance of a normalization term in order to
improve the robustness of the AL method.

A schematic flowchart of the AL-based topology
optimization framework that we implement in this work
is depicted in Fig. 3. We first use input data related to
the finite element problem and the optimizer and then
initialize the Lagrange multiplier estimators, λ

(k)
j , and the

penalty term, μ(k) for k = 0. With that information, we
use the method of moving asymptotes (MMA) (Svanberg
1987) to find an approximate minimizer of the normalized
AL function; that is, we find an approximate solution
of the minimization problem (43). Using the solution
obtained from the approximate solution of the AL problem,
we update λ

(k)
j and μ(k) and repeat the process until

convergence is achieved. In particular, we consider that the
problem has converged when 1

N
sum(|z(k)

i+1 − z(k)
i |) < Tol
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Fig. 3 Schematic flowchart of the AL-based topology optimization
framework implemented in this study to solve topology optimization
problems with local stress constraints

and max(σ v
j /σlim) − 1 < TolS, where Tol and TolS are

prescribed tolerance values for the design variable change
and the stress constraints, respectively, and z(k)

i+1 and z
(k)
i are

design variable vectors at two consecutive MMA iterations
of a given AL sub-problem, k.

The values of the initial penalty term, μ(0), maximum
penalty term, μmax, penalty term update parameter, α, and
initial Lagrange multiplier estimators, λ(0), influence the
performance of the AL method. From all these terms, the
latter has the least influence in the performance of the
method and can be chosen as λ(0) = 0. However, the
parameters used to define the update of the penalty term
must be obtained through an initial calibration process.
First, μ(0) should not be too small or else the convergence
of the method becomes too slow. Second, the value of μmax

should not be too large to prevent ill-conditioning. Third, the
value of α is recommended to be small (e.g., 1 < α < 2), so
that the μ(k) grows at a moderate pace between consecutive
AL sub-problems. In our experience, once these parameters
have been found for a given problem (e.g., for the traditional
L-bracket problem), they tend to work for a variety of other
problems, as we show later in the numerical examples.

5 Sensitivity analysis

We solve the stress-constrained topology optimization prob-
lem (37) using a gradient-based optimization algorithm;

thus, we require the sensitivity information of the normal-
ized AL function in (43), for which we use the chain rule:

dJ (k)

dze

=
N∑

�=1

(
∂E�

∂ze

dJ (k)

dE�

+ ∂V�

∂ze

dJ (k)

dV�

)
(44)

or in vector form:

dJ (k)

dz
= ∂E

∂z
dJ (k)

dE
+ ∂V

∂z
dJ (k)

dV
, (45)

where E = mE(y) and V = mV (y) are vectors containing
design-related information. Because the normalized AL
function is divided into the objective function term and the
penalty term, we rewrite (45) in a more convenient way as:

dJ (k)

dz
= ∂E

∂z

(
∂f

∂E
+ 1

N

∂P (k)

∂E

)
+ ∂V

∂z

(
∂f

∂V
+ 1

N

∂P (k)

∂V

)
.

(46)

Given that E = mE(Pz) and V = mV (Pz), the sensitivity of
the material stiffness parameters, E, and volume fractions,
V, with respect to the design variables, z, are given by:

∂E
∂z

= PT JmE
(Pz) and

∂V
∂z

= PT JmV
(Pz), (47)

respectively, where JmE
= diag(m′

E(y1), . . . , m
′
E(yN)) and

JmV
= diag(m′

V (y1), . . . , m
′
V (yN)) (Talischi et al. 2012b).

Based on the optimization statement (37), the sensitivity
of the objective function term is:

∂f

∂E�

= 0 and
∂f

∂V�

= A�

AT 1
. (48)

According to (39), P (k) has no direct dependence on V�, and
thus, its sensitivity with respect to V� is:

∂P (k)

∂V�

= 0. (49)

However, P (k) has a direct dependence on the element
stiffness parameter, E�, through the stress constraints
(cf. (37)2). Thus, its sensitivity with respect to E�, is
expressed as:

∂P (k)

∂E�

=
N∑

j=1

[λ(k)
j +μ(k)hj (z,U)]

[
∂hj (z,U)

∂E�

+ ∂hj (z,U)

∂U
· ∂U
∂E�

]
.

(50)

We use the adjoint method (Bendsøe and Sigmund 2003) to
avoid the expensive computation of ∂U/∂E�, for which we
use the equilibrium condition (32). The sensitivity of the
residual vector, R, at equilibrium can be written as:
∂R
∂E�

= ∂Fint

∂U
· ∂U
∂E�

+ ∂Fint

∂E�

− ∂Fext

∂E�

= KT

∂U
∂E�

+ ∂Fint

∂E�

= 0, (51)

where we have assumed that the external force vector, Fext ,
is independent of the design variables. Now, we add the term
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ξT ∂R/∂E� to (50), in which ξ is an adjoint vector. That is,
we write (50) as:

∂P (k)

∂E�

=
N∑

j=1

[λ(k)
j +μ(k)hj (z,U)]

[
∂hj (z,U)

∂E�

+ ∂hj (z,U)

∂U
· ∂U
∂E�

]

+ξT

(
KT

∂U
∂E�

+ ∂Fint

∂E�

)
(52)

Finally, we choose ξ such that all terms containing ∂U/∂E�

vanish from (52), which leads to:

∂P (k)

∂E�

=
N∑

j=1

[λ(k)
j + μ(k)hj (z,U)]∂hj (z,U)

∂E�

+ ξT ∂Fint

∂E�

,

(53)

where ξ solves the adjoint problem:

KT ξ = −
N∑

j=1

[
λ

(k)
j + μ(k)hj (z,U)

] ∂hj (z,U)

∂U
. (54)

Based on the functional form of hj (z,U) in (40),
we obtain that ∂hj (z,U)/∂U = 0 whenever gj (z) <

−λ
(k)
j /μ(k) and:

∂hj

∂U
= ∂gj

∂U
= ∂gj

∂σ v
j

∂σ v
j

∂σ
· ∂σ

∂U
(55)

otherwise. The term ∂gj /∂σ v
j is obtained directly from

(37)2. Now, to obtain ∂σv
j /∂σ , we recall that the von Mises

stress is computed as:

σv
j =

√
σ T V0σ , (56)

where σ = [σ11 σ22 σ12]T is the vector of Cauchy stresses,
in Voigt notation, obtained as σ = ∂W0/∂ε, and:

V0 =
⎡
⎣ 1 −1/2 0

−1/2 1 0
0 0 3

⎤
⎦ .

Therefore, the sensitivity of the von Mises stress with
respect to the Cauchy stress vector is given by:

∂σv
j

∂σ
= V0σ

σv
j

. (57)

Finally, the term ∂σ/∂U is found explicitly as:

∂σ

∂U
= ∂σ

∂ε
· ∂ε

∂U
= DB (58)

where ε is the infinitesimal strain vector (in Voigt notation),
D is the material tangent matrix, and B is the strain-
displacement matrix.

6 PolyStress implementation in Matlab

We adopt the general structure established in PolyTop to
implement the discrete topology optimization problem (37)
and apply appropriate modifications to the FE analysis
routine to solve the discrete variational problem (30) and
to the optimization routine to implement the AL method.
As part of the modification to the optimization routine, we
implement a version of the method of moving asymptotes
(MMA) (Svanberg 1987), tailored to solve unconstrained
minimization problems.We provide specific details on these
modifications in the subsequent sections.

6.1 Input data and PolyScript

As in PolyTop, we use a Matlab script called
PolyScript to collect all the parameters necessary to
run PolyStress. The input parameters required to run
PolyStress are all placed in two struct arrays, fem
and opt. The fem structure contains the information
required for the FE analysis routine (e.g., mesh, loading,
supports, and material properties) while the opt structure
contains information related to the topology optimization
(e.g., filter matrix, material interpolation functions, and
parameters of the optimizer). Table 1 displays the fields
stored in the fem structure array and Table 2 those stored
in the opt structure array. The main differences between
the current fem fields and those in PolyTop are related to
the nonlinear FE analysis routine (e.g., fem.MatModel,
fem.MatParam, fem.tolR, and fem.MaxIter) and
to the evaluation of the von Mises stresses (e.g., fem.SLim
fem.B0, fem.rowD, fem.colD, fem.eDof, and
fem.VM Stress0). Regarding the opt structure, the
differences between the current opt fields and those in
PolyTop are related to the optimizer (e.g., opt.Move,
opt.Osc, opt.AsymInit, opt.AsymInc, and
opt.AsymDecr, which we use for the MMA subroutine)
and to the continuation of the penalization parameter of
the threshold projection function (17), which are embedded
in the opt.contB field. The opt.contB field contains
four entries, [BFreq,B0,Binc,Bmax], corresponding
to the update frequency, initial value, increment value,
and maximum value, respectively, of parameter β in (17).
PolyStress uses these four entries to update parameter
β as:

if mod(Iter,BFreq)==0; B = min(B+Binc,Bmax); end

Similarly to the PolyTop implementation,
PolyScript calls the polygonal mesh generator
PolyMesher (Talischi et al. 2012a) to obtain the finite
element mesh, boundary conditions, and applied loads.
PolyScript also calls the subroutine PolyFilter to
compute the filter matrix, P. We modify the PolyFilter
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Table 1 List of fields in fem
structure fem field

fem.NNode Number of nodes

fem.NElem Number of elements

fem.Node [NNode × 2] array of nodes

fem.Element [NElem × Var] cell array of elements

fem.Supp [NSupp × 3] support array
fem.Load [NLoad × 3] load array

fem.Passive Array of passive elements

fem.Thickness Element thickness

fem.MatModel String array with the name of the material model

fem.MatParam [1 × Var] Array of material model parameters

fem.SLim Material yield stress

fem.TolR Tolerance for the norm of the force residual

fem.MaxIter Maximum number of Newton-Raphson iterations

fem.MEX String array to use of MEX functions (’Yes’ or ’No’)

fem.ElemArea† Array of element areas

fem.W† Weights at Gauss points

fem.dNdxi† Derivatives of shape functions at Gauss points

fem.ElemNDof† Array showing number of DOFs of elements

fem.k0† Array of local stiffness matrix entries

fem.i† Index array for sparse assembly of fem.k0

fem.j† Index array for sparse assembly of fem.k0

fem.e† Array of element IDs corresponding to fem.k0

fem.eDof† Index array for sparse assembly of global load vectors

fem.DofE† Array of element IDs corresponding to global load vectors

fem.iK0† Index array for sparse assembly of element stiffness matrices

fem.jK0† Index array for sparse assembly of element stiffness matrices

fem.Fext† Global external load vector

fem.FreeDofs† Array of free degrees of freedom

fem.B0† Strain-displacement matrices at element centroids

fem.rowD† Index array for sparse assembly of element tangent matrices

fem.colD† Index array for sparse assembly of element tangent matrices

fem.U† Converged displacement vector at each optimization iteration

fem.L† Lower triangular matrix from Cholesky factorization of stiffness matrix

fem.s† Permutation vector from Cholesky factorization of stiffness matrix

fem.f NL† Force vector assuming solid elements

fem.VM Stress0† Array of von Mises stress at element centroids

All fields marked with the superscript †, if empty, are populated inside PolyStress

routine in PolyTop in order to implement the nonlinear
filter (26)–(27) used in the current implementation and
add a new capability to the function to impose symmetry
to the density field about either the x1-axis, the x2-axis,
or both.8 We provide the modified PolyFilter rou-
tine as supplementary material. Before populating the
opt structure, PolyScript calls an auxiliary function
called MatIntFnc, which given an input vector y and

8Appendix B provides additional details explaining our approach to
impose symmetry.

a set of parameters, params,9 it outputs the vector of
stiffness, E = mE(y), the vector of volume fractions,
V = mV (y), and their corresponding sensitivity vectors,
∂E/∂y and ∂V/∂y, which as in PolyTop, are understood
as the diagonal entries of the Jacobian matrices of mE(y)
and mV (y), respectively. Because the threshold projection
function (17) is not available in PolyTop, we modify the

9For the case in which we compute mV (y) using the threshold
projection function (17) and mE(y) using SIMP in (18)), the set
of parameters in the field params becomes [p,B,eta0], which
correspond to parameters p, β, and η, respectively.
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MatIntFnc implementation accordingly, as can be seen
in the supplementary material.

6.2 Computation of the AL function inPolyStress

We use the AL method to solve the topology optimization
problem (37), for which we require to solve the AL
sub-problem (43) at each step. The computation of the
normalized AL function is divided in two parts: an objective
function term, ObjectiveFnc, and a penalty term,
PenalFnc. To compute the objective function term, we
use a slightly modified version of the constraint function,
ConstraintFnc, implemented in PolyTop. The only
difference between the function in PolyTop and that in
PolyStress is that the latter needs no volume fraction
limit. To compute the penalty term of the normalized
AL function, we require aseparate implementation, which

calls two auxiliary functions: the nonlinear FEM routine,
NLFEM, and the von Mises stress computation routine,
von Mises Stress. The former is used to obtain the
displacement vector, U, while the latter is used to compute
the von Mises stress at the centroid of all elements as well
as their sensitivity with respect to the displacement vector.
The function used to evaluate the normalized AL function
and its sensitivity is called AL Function and is provided
with the PolyStress code, as shown in Appendix E.

6.3 Nonlinear FE analysis routine

We use a nonlinear FE analysis routine based on the
Newton-Raphson method with a weak line search algo-
rithm10 to solve the discretized variational problem (30).
The main portion of the nonlinear FE analysis routine is
summarized in the following few lines of code:

10Our weak line search algorithm was obtained from the following
reference: Ascher and Greif (2011) A first course in numerical
methods. SIAM (Society for Industrial and Applied Mathematics).

In the routine above, the incremental displacement
vector, Delta U, is obtained using a subroutine called
SolveLinSys, which uses the Cholesky decomposition
of the tangent stiffness matrix, KT . Then, the displacement
vector, U, is updated by means of a weak line search
algorithm. Upon convergence, the code stores the converged
displacement vector, U, in addition to the lower triangular
matrix, L, and the permutation vector, s, coming from the
Cholesky decomposition of K. Matrix L and vector s are
stored so that we can compute the adjoint vector efficiently.
The nonlinear FE analysis routine is called only when the
material model is nonlinear. When dealing with a linear
material, we obtain the displacement vector directly by
solving the linear system, KT U = Fext , where the stiffness
matrix is computed based on the stiffness matrix for the
solid elements, which is stored in a pre-processing stage.

As widely known, the bottleneck in any topology opti-
mization is related to the finite element analysis, especially
when the structure is made of a nonlinear material. In an
attempt to improve the efficiency of the nonlinear analysis

routine, the subroutine in charge of computing the global
stiffness matrix is converted to a MEX function. When
a user first runs PolyStress to optimize a nonlinear
structure, the MEX files are compiled automatically in the
subroutine called GlobalK, but they are compiled only if
the user wants to use them. For example, if the user types
fem.MEX=‘Yes’ (see PolyScript file in Appendix
D), the MEX functions will be generated, but if the user
types fem.MEX=‘No’, PolyStress will use traditional
Matlab functions. The complete nonlinear analysis routine
is provided in Appendix F.

The Newton-Raphson routine implemented in
PolyStress uses only one load step to solve the varia-
tional problem of nonlinear elasticity. The implementation
with a single load step and a weak line search algorithm has
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Table 2 List of fields in opt
structure opt field

opt.zMin Lower bound for design variables

opt.zMax Upper bound for design variables

opt.zIni Initial array of design variables

opt.MatIntFnc Handle to material interpolation function

opt.contB Threshold projection continuation params.

opt.P Matrix that maps design to element variables

opt.Tol Convergence tolerance on design variables

opt.TolS Convergence tolerance on stress constraints

opt.MaxIter Maximum number of AL steps

opt.MMA Iter Number of MMA iterations per AL step

opt.lambda0 Initial Lagrange multiplier estimators

opt.mu0 Initial value AL penalty factor

opt.mu max Maximum value AL penalty factor

opt.alpha Penalty factor update parameter

opt.Move Allowable move step in the MMA update scheme

opt.Osc Oscillation parameter in the MMA update scheme

opt.AsymInit Initial asymptote parameter in the MMA update scheme

opt.AsymInc Asymptote parameter increment in the MMA update scheme

opt.AsymDecr Asymptote parameter decrement in the MMA update scheme

proven effective to solve all the problems presented in this
manuscript.11

6.4 Bilinear material model

The nonlinear FE analysis routine discussed previously
can accommodate any nonlinear material model, given that
its stored energy function, W0, is defined. Each nonlinear
material model is called by the nonlinear FE analysis routine
through a function called material model. One of the
material models implemented in the material model
routine belongs to the category of conewise linear elastic
materials, which are a generalization of the bimodular
material models (Curnier et al. 1994). To define the strain
energy density, W0, of a conewise linear elastic material,
the space of infinitesimal strains, E , is divided into a
compression sub-domain, Ec and a tension sub-domain, Et ,
such that Ec = {ε ∈ E | χ(ε) < 0} and Et = {ε ∈
E | χ(ε) > 0}, where χ(ε) = tr(ε) is a scalar function
used to ensure continuous differentiability ofW0. The stored
energy density of a conewise linear elastic material with
continuous Cauchy stress tensor across E is given by:

W0(ε) = 1

2
λ(ε) tr2(ε) + μ tr(ε2), (59)

11However, an implementation with several load steps can also be
used. To do so, one would need to add an additional for loop to the
nonlinear FE analysis routine including all the load steps.

where μ is the shear modulus and λ(ε) is a Lamé parameter
given by:

λ(ε) =
{

λc if tr(ε) < 0

λt if tr(ε) > 0.
(60)

The Cauchy stress and material moduli tensors are
computed as:

σ (ε) = ∂W0

∂ε
= λ(ε) tr(ε)I + 2με and (61)

CT (ε) = ∂2W0

∂ε2
=λ(ε)I ⊗ I + 2μI –⊗– I,

respectively, where the operators ⊗ and –⊗– are defined

such that, for any two second-order tensors, a and b, (a ⊗
b)ijkl = aij bkl and (a

–⊗– b)ijkl = 1
2 (aikbjl + ailbjk). It is

convenient to express the material model above in terms of
the Young modulus in tension, Et , and the Young modulus
in compression, Ec, for which we rewrite λc and λt , as
follows:

λc = μ(Ec − 2μ)

3μ − Ec

and λt = μ(Et − 2μ)

3μ − Et

. (62)

According to (59)–(60), the material behaves as a linear
material with properties (Et , μ) when χ(ε) = tr(ε) >

0 (tension subdomain, Et ) and as a linear material with
properties (Ec, μ) when χ(ε) = tr(ε) < 0 (compression
subdomain, Ec). Even when Et �= Ec, both the strain energy
density and stress tensor are continuous in the entire space
of strains, E , including the interface between Et and Ec.
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We provide a detailed proof of continuity of both the strain
energy density function (59) and the stress tensor (61)1 in
Appendix C.

To implement the conewise linear elastic material in
PolyStress, we evaluate the stress tensor and material
tangent matrix using the elastic properties in compression
(Ec and μ) when tr(ε) < 0, or the elastic properties in
tension (Et and μ) when tr(ε) > 0. The implementation of
this material model is provided in the material model
routine, which is provided as a supplementary material. To
use the bilinear model, the following fem fields should be
used in the PolyScript file (see Appendix D):

fem.MatModel=‘Bilinear’, fem.MatParam=[Et,Ec,G]

where Et, Ec, and G are the Young’s modulus in tension, the
Young’s modulus in compression, and the shear modulus,
respectively.

6.5 Design variable update scheme

In PolyTop, the design variables are updated using a rou-
tine called UpdateScheme, which is based on the Opti-
mality Criteria (OC) method (Bendsøe and Sigmund 2003).
However, the solution of the stress-constrained problem
requires the implementation of a different update scheme.
Specifically, we implement a version of MMA (Svanberg
1987) tailored to solve unconstrained optimization problems
such as problem (43). At each AL step, instead of solving
the AL sub-problem (43), we solve an approximate convex
sub-problem of the form:

min
z∈[0,1]N

J̃ (k)(z) = r(k) +
N∑

�=1

(
p

(k)
�

U
(k)
� − z�

+ q
(k)
�

z� − L
(k)
�

)

s.t: ᾱ
(k)
� ≤ z� ≤ β̄

(k)
� , � = 1, . . . , N,

(63)

where ᾱ
(k)
� = max[z

�
, α

(k)
� ] and β̄

(k)
� = min[z̄�, β

(k)
� ], in

which α
(k)
� and β

(k)
� are chosen such that L

(k)
� < α

(k)
� <

z
(k)
� < β

(k)
� < U

(k)
� and, as suggested by (Svanberg 1987),

we evaluate them as α
(k)
� = 0.9L(k)

� + 0.1z(k)
� and β

(k)
� =

0.9U(k)
� + 0.1z(k)

� . Parameters z
�
and z̄� are obtained as

z
�

= max[0, z(k) − move] and z̄� = min[1, z(k) + move],
where move is a prescribed move limit. In addition,12

p
(k)
� = (U

(k)
� − z

(k)
� )2

[
max

(
∂J

∂z�

, 0

)
+ τ

∣∣∣∣ ∂J

∂z�

∣∣∣∣+ θ

U
(k)
� − L

(k)
�

]
,

(64)

12Although the expressions for p
(k)
� and q

(k)
� used here differ from

those in Svanberg (1987), they correspond to those used in Svanberg’s
implementation of MMA in Matlab.

q
(k)
� = (z

(k)
� − L

(k)
� )2

[
−min

(
∂J

∂z�

, 0

)
+ τ

∣∣∣∣ ∂J

∂z�

∣∣∣∣+ θ

U
(k)
� − L

(k)
�

]
,

(65)

and

r(k) = J (z(k)) −
N∑

�=1

(
p

(k)
�

U
(k)
� − z

(k)
�

+ q
(k)
�

z
(k)
� − L

(k)
�

)
, (66)

where τ = 10−3, θ = 10−6, and the terms ∂J/∂z�, � =
1 . . . , N are evaluated at z = z(k).

The last terms required to define the approximate convex
sub-problem (63) are the lower and upper asymptotes, L(k)

�

and U
(k)
� , respectively, which we compute as discussed in

Svanberg (1987). That is, for the first two iterations (i.e.,
when k = 1 and k = 2):

L
(k)
� = z

(k)
� − s

(k)
� (z̄� −z

�
) and U

(k)
� = z

(k)
� + s

(k)
� (z̄� −z

�
)

(67)

and for later iterations (i.e., when k ≥ 3),

L
(k)
� = z

(k)
� − s

(k)
�

(
z
(k−1)
� − L

(k−1)
�

)
and (68)

U
(k)
� = z

(k)
� + s

(k)
�

(
U

(k−1)
� − z

(k−1)
�

)
.

In the current Matlab implementation, s
(k)
� = AsymInit

for k = 1 and k = 2 and

s
(k)
� =

⎧⎨
⎩

AsymInc if (z
(k)
� − z

(k−1)
� )(z

(k−1)
� − z

(k−2)
� ) > 0

AsymDecr if (z
(k)
� − z

(k−1)
� )(z

(k−1)
� − z

(k−2)
� ) < 0

1 otherwise,
(69)

where AsymInit, AsymInc, and AsymDecr are fields
prescribed in the opt structure.

The minimizer of (63) can be found explicitly, which
improves the computational efficiency considerably, and it
is given by (Senhora 2019):

z∗
� = max{ᾱ(k)

� ,min[β̄(k)
� , B�]}, (70)

where

B� = L
(k)
� p

(k)
� − U

(k)
� q

(k)
� + (U

(k)
� − L

(k)
� )

√
p

(k)
� q

(k)
�

p
(k)
� − q

(k)
�

. (71)

The update scheme discussed above is implemented in
the MMA unconst subroutine, which is located inside
PolyStress, as can be seen in Appendix E.

7 Numerical results

In this section, we present several numerical exam-
ples to demonstrate various features of the educational
PolyStress code. We obtain all results reported in this
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section based on the single set of parameters displayed in
Table 3, which are kept constant in this paper.

Unless otherwise specified, all the problems discussed
next use SIMP for the material interpolation function (see
(18)). Moreover, for plotting purposes, the von Mises stress
maps displayed in this section are expressed in normalized,
such that the normalized von Mises stress at the centroid of
each element is given by:

σ̃ v
� = E�σ

v
� /σlim, (72)

where E� = mE(y�) and σv
� is given by (56).

7.1 Benchmark problems

Here, we solve several benchmark problems that are
typically found in the stress constrained literature. With
the benchmark problems, we demonstrate the ability
of PolyStress to solve problems with an increasing
number of elements/constraints, to enforce symmetry to the
designs through the regularization filter, to handle problems
with strong geometric singularities, among others. For all
the benchmark problems, we consider a linear material
model, for which we set fem.MatModel=‘Bilinear’
and fem.MatParam=[E0, E0, G], in which E0 is the
Young’s modulus, G = E0

2(1+ν0)
is the shear modulus, and ν0

is the Poisson’s ratio of the solid material.

Table 3 Input parameters used to solve all examples

Parameter Value

Initial Lagrange multiplier estimators, λ(0)
j 0

Initial penalty factor, μ(0) 10

Maximum penalty factor, μmax 10,000

Penalty factor update parameter, α 1.10

SIMP penalization factor, p 3.5

Nonlinear filter exponent, q 3

Ersatz parameter, ε 10−8

MMA iterations per AL step, MMA Iter 5

Initial threshold projection penalization factor, β† 1

Maximum threshold projection penalization factor, β†
max 10

Threshold projection density, η 0.5

Initial guess, z(0) 0.5

Convergence tolerance on design variables, Tol 0.002

Convergence tolerance on stress constraints, TolS 0.003

Maximum number of AL steps, MaxIter 150

†
Parameter β starts at 1 and increases by 1 every five
AL steps and up to the maximum value, βmax, i.e.,
[BFreq,B0,Binc,Bmax]=[5,1,1,10].

Fig. 4 L-bracket domain and boundary conditions

7.1.1 L-bracket

The first example is the L-bracket problem, which is
ubiquitous in the stress constraints literature (e.g., see
Pereira et al. 2004; Bruggi 2008; Paris et al. 2009; Paris et al.
2010; Le et al. 2010; Guo et al. 2011; Bruggi and Duysinx
2012; Xia et al. 2012; Luo et al. 2013; Zhang et al. 2013;
Holmberg et al. 2013b, 2013a; Emmendoerfer and Fancello
2014; Emmendoerfer and Fancello 2016; Lee et al. 2016;
Verbart et al. 2016; da Silva et al. 2018, 2019a). The domain
and boundary conditions of the L-bracket are provided in
Fig. 4. For this problem, we consider a linear material with
Young’s modulus, E0 = 70 GPa, Poisson’s ratio, ν0 = 0.25,
and stress limit σlim = 100 MPa.

We use PolyMesher (Talischi et al. 2012a) to generate
four regular quadrilateral meshes with increasing levels
of refinement (from ∼50,000 to ∼500,000 elements) and,
for each of the four meshes, we obtain the results shown
in Fig. 5 considering a filter radius of R = 0.05 m.
As observed in the results, the optimized topologies are
consistent across all levels of mesh refinement.

We analyze the efficiency of PolyStress using the
results from the L-bracket problem. To do so, we let
PolyStress run for 200 iterations (i.e., we run it for 40
AL steps with 5 MMA iterations per AL step) and report the
computational times obtained from the Matlab profiler.13

The code runtime breakdown for 200 iterations (40 AL
steps) of the L-bracket problem is reported in Table 4.

13The optimization iterations are run using Matlab 2017a on desktop
computer with a Xeon(R) CPU E5-1660 v3@ 3.00 GHz processor and
256 GB of RAM.
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Fig. 5 L-bracket topologies
(top) and von Mises stress maps
(bottom) for various levels of
mesh refinement

Table 4 Code runtime breakdown for 200 optimization iterations of the L-bracket problem†

Mesh size 50,176 99,856 200,704 501,264

Precomputations 33.7 (11.6%) 58.2 (9.4%) 116.8 (7.1%) 291.4 (4.7%)

Computing P 13.5 (4.7%) 36.0 (5.8%) 366.7 (22.2%) 2480.2 (40.0%)

Assembling K 99.4 (34.3%) 203.9 (32.8%) 419.8 (25.4%) 1065.0 (17.2%)

Solving KU = F 58.8 (20.3%) 138.7 (22.3%) 308.0 (18.6%) 886.9 (14.3%)

Evaluating von Mises stress 14.2 (4.9%) 28.0 (4.5%) 59.3 (3.6%) 149.8 (2.4%)

AL function and sensitivity 45.1 (15.5%) 97.3 (15.7%) 213.0 (12.9%) 618.8 (10.0%)

Mapping z, E, and V 5.0 (1.7%) 18.7 (3.0%) 80.3 (4.9%) 492.9 (7.9%)

Design variable update 0.8 (0.3%) 1.5 (0.2%) 7.8 (0.5%) 19.1 (0.3%)

Plotting the solutions 14.1 (4.9%) 27.3 (4.4%) 54.9 (3.3%) 136.2 (2.2%)

Other 5.2 (1.8%) 11.7 (1.9%) 25.3 (1.5%) 67.3 (1.1%)

Total time of PolyScript‡ 290 621 1652 6208

†
Times are in seconds with percentage of total runtime of PolyScript in parenthesis

‡
The bold font is used to emphasize total runtimes

Table 5 Code runtime
comparison of PolyStress
and PolyTop (Talischi et al.
2012b)†

Mesh size
PolyStress PolyTop

Total time Iterations Time/200 iter.‡ Total time Iterations Time/200 iter.‡

50,176 500 333 290 335 222 261

99,856 1063 327 621 727 223 616

200,704 2883 362 1652 1891 230 1462

501,264 9439 309 6208 8164 230 4826

†
All runtimes are reported in seconds

‡
These times come from Table 4 and include times for both precomputations and computation of P
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The results show that, for smaller mesh sizes (e.g., less
than 100,000 elements), most of the computational time
is used to assemble the stiffness matrix and to solve the
linear systems, while the time spent during precomputations
(i.e., generating the FE mesh, computing the stiffness
matrices of all solid elements, among others) and that spent
computing the filter matrix, P, are relatively small. As the
mesh size increases (e.g., more than 200,000 elements),
the precomputation time remains small in comparison to
the total time, yet the time spent computing the filter
matrix increases considerably. For example, for the 200,704
element mesh, the time to compute P is 22% of the total
time and for the 500,264 element mesh, it is 40% of the total
time.

For the sake of comparison, we also solve the L-
bracket problem using PolyTop and compare the CPU
time with that of PolyStress in Table 5. In contrast
to the results reported in Table 4, here we compare the
total runtime of both PolyTop and PolyStress up
until each of them reaches convergence. In addition, we
compare the computational times for the first 200 iterations
to assess the efficiency of PolyStress relative to that
of PolyTop for the same number of iterations. Table 5
shows that the computational time for the first 200 iterations
in PolyStress is larger than that in PolyTop for all
mesh sizes (as expected), yet the increase in CPU time
is smaller than 13% for the first three meshes and about
29% for the 501,264 element mesh. The increase in CPU
time is expected because PolyStress requires additional
computations (e.g., von Mises stress computation, update
of AL parameters, among others), which are not needed
in PolyTop. Table 5 also shows the total CPU time for
both PolyStress and PolyTop up until convergence is
achieved.14 As expected, the number of iterations required
to achieve convergence is larger in PolyStress than
in PolyPolyTop. That is because of the local nature
of the stress-constrained problem, which uses a different
methodology and is more demanding computationally in the
sense that it is highly nonlinear and requires a large number
of iterations to satisfy all stress constraints.

PolyStress can also be used with other stress
constraint definitions such as the traditional vanishing
constraint (Cheng and Jiang 1992). For instance, to
implement a traditional vanishing constraint of the form:

gj (z,U) = mE(yj )�j ≤ 0, j = 1, . . . , N,

14For the case of PolyTop, we use a convergence tolerance, Tol =
10−4

we replace lines 73, 77, and 79 of the PolyStress.m
code by

73 g = E.*s;

77 dhdVM(a1) = E(a1).*1/fem.SLim;

79 dPenaldE(a1) = (lambda(a1)+mu. *h(a1)).*s(a1);

We solve the L-bracket problem discretized with 50,176
elements, considering the traditional vanishing constraint
shown above, to compare the results with those obtained
using the polynomial vanishing constraint. To solve this
problem with PolyStress, we first calibrate the value of
μ(0) (i.e., the initial penalty factor) to work appropriately
with the new constraint definition. For this problem, we find
that μ(0) = 200 yields satisfactory results.

Figure 6 displays both the results we obtain using the tra-
ditional vanishing constraint (Fig. 6a) and those obtained
using the polynomial vanishing constraint (Fig. 6b). The
results obtained with either the traditional constraint or
the polynomial one satisfy the stress constraints locally, as
observed by the von Mises stress maps (center plots) or by
the vonMises yield surface (right plots), which show that all
stress evaluation points are inside the von Mises envelope.
Although PolyStress is able to obtain a solution that
satisfies the stress constraints locally, the results show that
the topology obtained with the traditional constraint differs
from that obtained with the polynomial constraint. More-
over, the results show that the optimized volume fraction,
f (z∗), obtained with the traditional constraint is larger than
that obtained with the polynomial one. Both the difference in
topology and optimized volume fractions are expected out-
comes because the stress-constrained problem is non-convex,
and thus, the optimizer is likely to converge to a different
local minima when the parameters of the model change or
when different stress constraint definitions are used.

7.1.2 Portal frame

The next benchmark problem is the portal frame (Le et al.
2010; Lian et al. 2017; da Silva et al. 2019a), whose geometry
and boundary conditions are shown in Fig. 7. The domain
is discretized with 100,000 polygonal finite elements using
PolyMesher.15 For this problem, we use a linear material
with Young’s modulus, E0 = 100 GPa, Poisson’s ratio,
ν0 = 0.25, and stress limit, σlim = 1000 MPa.

15To generate the polygonal mesh to run this problem, line 11 of the
provided PolyScript.m file should be replaced by [Node,Element,
Supp,Load,∼] = PolyMesher(@PortalDomain,NElem,
100), using NElem=100000.
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Fig. 6 Optimized topologies
(left), von Mises stress maps
(center), and von Mises yield
surfaces (right) for the L-bracket
meshed with 50,176 elements.
The results displayed here are
obtained using a the traditional
vanishing constraint and b the
polynomial vanishing constraint.
The right figures display the
principal stresses at the centroid
of all elements together with the
von Mises yield surface to show
that all stress evaluation points
are inside the envelope

For this problem, we compare the results obtained when
using either SIMP or RAMP as the material interpolation
function. To obtain the results using RAMP, we use
p0 = 3.5 in (18)2. The solutions, depicted in Fig. 8,
are obtained using a filter radius, R = 0.25 m, and
imposing symmetry about the y-axis, which we achieve
through the filter operator. To impose symmetry, we
compute the filter matrix, P, using PolyFilter, as
P = PolyFilter(fem,R,q,‘Y’), where q = 3 are
the nonlinear filter exponent (see Table 3). Although a
fairly symmetric solution can be obtained without imposing
symmetry, we impose it because the polygonal mesh that we
used is not symmetric about the y-axis. As observed from
the results, PolyStress successfully removed material
from the region of stress concentration located at the

Fig. 7 Portal frame domain

re-entrant corner on the lower center part of the portal frame
for both the SIMP and RAMP designs. Due to the highly
nonlinear behavior of the stress-constrained problem, the
solution obtained for SIMP differs from that obtained for
RAMP, as expected. Finally, the results also show that the
stresses are satisfied locally, which can be observed from
the results on the center or on the right of the figure.

7.1.3 Eyebar

Here, we solve a problem usually referred to as the eyebar.
This practical design problem was introduced by Pereira
et al. (2004) to find the optimized topology of an eyebar
that is part of an eyebar chain of a suspension bridge. The
geometry and boundary conditions of the eyebar problem
are shown in Fig. 9. The hole is subjected to a horizontal
load of magnitude P , distributed according to the function
t (x, y) = r2 − y2, in which (x, y) = (0, 0) is the center of
the circle and r is the radius of the circle.

For this problem, we consider a linear material with
Young’s modulus, E0 = 200 GPa, Poisson’s ratio, ν0 = 0.3,
and a stress limit, σlim = 450 MPa. To obtain the optimized
topology of the eyebar reported in Fig. 10, we discretize
the design domain using 100,000 polygonal finite elements
(Talischi et al. 2012a) and use a filter radius, R = 0.04 m.16

16To generate the polygonal mesh to run this problem, line 11 of the
provided PolyScript.m file should be replaced by [Node,Element,
Supp,Load,∼] = PolyMesher(@EyeBarDomain,NElem,
100) with NElem=100000.
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Fig. 8 Portal frame topologies
(left), von Mises stress maps
(center), and von Mises yield
surfaces (right) obtained using
a SIMP and b RAMP

As observed in Fig. 10, small holes appear at two locations
along the loaded portion of the domain boundary. Such
features are unlikely to be obtained using traditional
design methodologies, which highlights the importance of
stress-based topology optimization to achieve non-intuitive
designs.

7.1.4 Crack

The following problem, denoted to as the crack problem,
is found in studies by Emmendoerfer and Fancello (2014)
and Emmendoerfer and Fancello (2016), and most recently
in a study by Chu et al. (2018). Here, we solve a slightly
modified version of the crack problem by Emmendoerfer
and Fancello (2014), as seen in Fig. 11. Due to symmetry,

Fig. 9 Eye bar domain and boundary conditions

we only model half of the design domain.17 We use this
problem to test the ability of PolyStress to solve stress-
constrained problems in domains with strong singularities
such as those found at the tip of a crack.

For this problem, we consider a linear material with
Young’s modulus, E0 = 70 GPa, Poisson’s ratio, ν0 =
0.25, and stress limit, σlim = 100 MPa. We obtain the
optimized topology shown in Fig. 12 using 100,352 regular
quadrilateral elements and a filter radius, R = 0.045 m. As
seen in the results, PolyStress is able to round the crack
tip in order to remove the geometric singularity that was
causing the stress concentration.

7.2 Corbel design

Here, we use PolyStress to obtain optimized topologies
for a corbel structure whose geometry and boundary
conditions are shown in Fig. 13 (left). We obtain three
designs, one for a linear material, one for a tension-
dominated bilinear material, and one for the same tension-
dominated bilinear material with symmetry about the x-
axis. The uniaxial stress-strain curves for the linear and
the bilinear material are depicted in Fig. 13 (right). To
impose symmetry, we compute the filter matrix as P =
PolyFilter(fem,R,q,‘X’). The linear material has

17To generate the mesh to run this problem, line 11 of the pro-
vided PolyScript.m file should be replaced by [Node,Element,
Supp,Load] = Mesh Crack Prob(Ne ap); NElem=size
(Element,1), using Ne ap=100000.
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Fig. 10 Eye bar topology (left)
and von Mises stress map (right)

Fig. 11 Crack domain and
boundary conditions

Fig. 12 Crack topology (left)
and von Mises stress map (right)

Fig. 13 Corbel design: a corbel
domain and boundary conditions
and b uniaxial stress-strain
curves for two material models
(i.e., for linear and a bilinear
material) used for the design
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Fig. 14 Corbel topologies(top) and vonMises stress maps (bottom) for
a linear material, b tension-dominated bilinear material, and c tension-
dominated bilinear material with symmetry imposed through the filter
operator

Young’s modulus, E0 = 70 GPa, and Poisson’s ratio,
ν0 = 0.25, and the bilinear material has Young’s modulus
in tension, Et = 70 GPa, Young’s modulus in compression,
Ec = 28 GPa, and shear modulus, G = 28 GPa. To obtain
the optimized topologies, we discretize the design domain
using 79,524 regular quadrilateral elements and consider a
filter radius, R = 0.15 m.18

The results obtained for the linear material are shown
in Fig. 14a and, as expected, the results are symmetric
with respect to the x-axis. For the linear case, we obtain
an optimized volume fraction of 0.23. The non-symmetric
results for the bilinear material are shown in Fig. 14b. In this
case, part of the compression-dominated region that appears
in Fig. 14a is removed. The optimized structure of Fig. 14b
has a volume fraction of 0.22. Now, when symmetry is
imposed, we obtain the results shown in in Fig. 14c.
Because imposing symmetry adds additional constraints to
the formulation (which are implicitly added via the filter
operator), we expect the volume fraction of the symmetric
structure of Fig. 14c to be larger than that of Fig. 14b. That
is indeed the case because the symmetric results led to an
optimized volume fraction of 0.25.

7.3 Antenna support bracket design

This example aims to find the optimized topology of
the antenna support bracket with geometry and boundary

18To generate the mesh to run this problem, line 11 of the pro-
vided PolyScript.m file should be replaced by [Node,Element,
Supp,Load] = Mesh Corbel(Ne ap);
NElem=size(Element,1), using Ne ap=80000.

conditions illustrated in Fig. 15a. We obtain three designs,
one in which we use a linear material with Young’s
modulus, E0 = 120 GPa, Poisson’s ratio, ν0 = 0.3, and
stress limit, σlim = 1000 MPa, and two in which we use a
nonlinear material with strain energy density function given
by the compressible Ogden model (Ogden 1972; Feng et al.
2006):

W0(ε1, ε2, ε3) =
n∑

p=1

μp

αp

(λ
αp

1 + λ
α3
2 + λ

αp

1 − 3)

+
n∑

p=1

μp

αpβp

[
(λ1λ2λ3)

−αpβp − 1
]
, (73)

where αp, μp, βp, and n are material parameters and
λi = εi + 1, i = 1, 2, 3 are the principal
stretches under small deformations. To incorporate the
Ogden model into PolyStress, we only need to add
the stress vector, σ , and the material tangent matrix,
D, to the material model subroutine (see electronic
supplementary material). Analytical expressions for the
stress vector and material tangent matrix can be found
in a study by Chi et al. (2019). To obtain designs using
the Ogden model, we use the same Young’s modulus and
Poisson’s ratio considered for the linear material (i.e., E0 =
120 GPa and ν0 = 0.3) and take only one term of the
Ogden model (i.e., we use n = 1) with two different values
of α1 (e.g., we use α1 = 100 and α1 = −100, which
leads to a tension-dominated and a compression-dominated
material, respectively). To use the Ogden material model in
PolyStress, the following fields should be modified in
the fem structure defined in the PolyScript.m file:

fem.MatModel=‘Ogden’and

fem.MatParam = [μ1, α1, β1],
where μ1 = E0

α1(1+ν0)
is the initial shear modulus and β1 =

ν0
1−2ν0

(Chi et al. 2019).19

Figure 15b depicts the uniaxial stress-strain curves for the
three materials considered in the analysis. The figure shows
the uniaxial stress, σ11, normalized with respect to the stress
limit, σlim, which is useful to determine the level of strains
that we expect in our optimized designs. To determine the
expected level of strains for each design, we find the values
of ε11 at the intersection between each of the stress-strain
curves with the two horizontal dashed lines corresponding
to σ11/σlim = ±1. Using this procedure, we obtain that
the expected level of strains for the linear design ranges
approximately between −8 × 10−3 and 8 × 10−3, for the
tension-dominated material (Ogden 1) between −12×10−3

and 6 × 10−3, and for the compression-dominated material
(Ogden 2) between −6 × 10−3 and 12 × 10−3.

19When n > 1 in (73), fem.MatParam should be populated as
follows: fem.MatParam = [μ1, α1, β1, . . . , μn, αn, βn].
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Fig. 15 Problem setup for antenna support bracket design: a antenna
support bracket domain and boundary conditions and b uniaxial stress-
strain curves for three materials used to obtain optimized designs for
an antenna support bracket. The vertical dashed lines correspond to the

intersection between the uniaxial stress-strain curves and σ11/σlim =
±1, which gives an indication of the expected level of strain that the
optimized topologies should experience

Fig. 16 Antenna support
bracket topologies (left), von
Mises stress maps (center), and
principal strain maps (right) for
a a linear material, b tension-
dominated material (Ogden 1),
and c compression-dominated
material (Ogden 2) (cf. Fig. 15b)
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Fig. 17 Effect of the magnitude of the external load on the opti-
mization results for the antenna support bracket considering a linear
material: a optimized volume fraction as a function of P/P0 and b

maximum principal strains for optimized designs as a function of
P/P0. The value of P0 corresponds to the magnitude of the load used
to obtain the results in Fig. 16

We discretize the design domain using 30,000 polygonal
finite elements (Talischi et al. 2012a) and consider a
filter radius, R = 0.07 m to arrive at the optimized
topologies shown in Fig. 16.20 As observed from the results,
the optimized topologies and the level of deformation
obtained in the optimized designs are highly sensitive to
the choice of material model. First, for the linear material
model (Fig. 16a), we obtain that the principal strains
oscillate between −8 × 10−3 and 8 × 10−3. Second, for
the tension-dominated material (Fig. 16b), the level of
deformation under compression is larger than that under
tension, leading to a distribution of principal stresses
ranging between −12 × 10−3 and 6 × 10−3. Finally,
for the compression-dominated material (Fig. 16c), the
optimized structure deforms more under tension than under
compression, leading to a distribution of principal strains
that ranges between −6 × 10−3 and 12 × 10−3. The levels
of deformation of the three optimized designs behave as
expected from the analysis conducted for the uniaxial stress-
strain curves from Fig. 15b. The strain levels for all designs
shown in Fig. 16 are small enough so that the theory of
small-strain elasticity holds.21

The magnitude of the external load affects plays a role
in the optimization results. Specifically, as the magnitude
of the external load increases, the optimized structures will

20To generate the polygonal mesh to run this problem, line 11 of the
provided PolyScript.m file should be replaced by [Node,Element,
Supp,Load,∼] = PolyMesher(@AntennaDomain,NElem,
100) with NElem=30000.
21If the level of strains for a given problem increases, it may reach a
point in which small-strain elasticity no longer holds. For this type of
problems, the entire formulation must be modified to account for finite
deformations, which is out of the scope of the present work.

have a larger volume fraction and vice-versa. Nonetheless,
we argue that the external load level only plays a role
on the value of the optimized volume fraction but not on
the maximum and minimum strain levels of the optimized
structures. That is because the maximum and minimum
strain levels are essentially limited by the stress limit,
σlim (see Fig. 15b). To verify this hypothesis, we obtain
optimized topologies for the antenna support bracket made
with a linear material considering various values of P/P0,
in which P0 is the load used to obtain the results in
Fig. 16. As we discussed above, the results depicted in
Fig. 17 show that, as P/P0 increases, the optimized volume
fraction increases and the maximum strain for the optimized
topologies remains unchanged.

Fig. 18 Hook domain
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Fig. 19 Hook topology (left) and von Mises stress map (right) for (a) the stess-based design and (b) a compliance-based design. Both designs
have a volume fraction of 0.35, yet the compliance-based design exceeds the stress limit by about 150%

7.4 Hook design

The last set of results corresponds to the design of a
hook whose geometry and boundary conditions are shown
in Fig. 18. The hook is made of a linear material with
Young’s modulus, E0 = 100 GPa, Poisson’s ratio,
ν0 = 0.25, and stress limit, σlim = 120 MPa. In this
example, we compare the optimized topology obtained from
PolyStress (stress-based design) with that obtained
from PolyTop (compliance-based design). We obtain both
designs using the same material interpolation function and
continuation scheme. That is, the volume interpolation
function is given by (17) and the stiffness interpolation
function is given by SIMP, as shown in (18). We run
PolyTop starting with β = 1 and increase β by 1 and p

by 0.5 every 25 iterations.22 Unlike the stress-constrained
problem, the compliance minimization problem is convex
when p = 1. Thus, to solve the compliance minimization
problem, we employ a continuation scheme such that we
start with p = 1 (the convex case) and increase p by 0.5
each time β is updated, which helps penalizing intermediate
densities and yields black-and-white solutions. Since the
stress-constrained problem is not convex even for p = 1,
there is no clear advantage of using a continuation scheme
for p as in the compliance minimization case.

Using 100,000 polygonal finite elements (Talischi et al.
2012a) and a filter radius, R = 0.04 m, we obtain the
optimized topologies shown in Fig. 19.23

22The 25 iterations per continuation step in PolyTop is consistent
with the 5 AL steps per continuation step in PolyStress because,
according to Table 3, PolyStress runs 5 MMA iterations for each
AL step (i.e., MMA Iter × BFreq = 25 FE solves per continuation
step).
23To generate the polygonal mesh to run this problem, line 11 of the
provided PolyScript.m file should be replaced by [Node,Element,
Supp,Load,∼] = PolyMesher(@HookDomain,NElem,
100) with NElem=100000.

The results show clear topological differences between
the two designs. For instance, in the stress-based design
(Fig. 19a) the material underneath the circular hole moves
outward (towards the outer boundary of the domain) to
drive the stresses both at the location of the hole and in the
lower part of the domain to values below the stress limit.
Conversely, in the compliance-based design (Fig. 19b),
the members that develop underneath the circular hole are
closely spaced, which leads to a stress concentrations both
at the sides of the hole and in the lower part of the design
domain, which exceed the stress limit, σlim. The comparison
between these two designs highlights the importance of
stress-based formulations to obtain structures that will not
fail under the applied loads.

8 Remarks

We provide results for several benchmark problems, which
demonstrate the ability of PolyStress to solve stress-
constrained topology optimization problems for various
levels of mesh refinement and for various design domains.
For example, we solved the classical L-bracket problem for
various mesh sizes (from about 50,000 elements to about
500,000 elements) and showed that the solutions resemble
one another independently of the mesh size. A computa-
tional efficiency analysis conducted on the L-bracket
(considering a linear material model) revealed that the code
runtime of PolyStress, which considers thousands of
local constraints, is of the same order of magnitude as
that of PolyTop, which is designed to solve compliance
minimization problems with a single volume constraint.

In addition to the benchmark problems, we solve
two additional problems in which we consider nonlinear
material models. The first of those problems pertains to
the design of a corbel structure made of either a linear
or a bilinear material. For the nonlinear material case, we
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highlight the ability of PolyStress to obtain symmetric
results by simply modifying the function that computes the
filtered density field. The second of those examples focuses
on the design of an antenna support bracket made of a
compressible Ogden material. We use a one-term Ogden
model to represent a tension-dominated and a compression-
dominated material and use these two materials to obtain
optimized topologies for the bracket. We clearly observe
that the optimized topologies are highly sensitive to the
choice of material model. We provide a final example in
which we design a Hook made of a linear material. We
compare the solution from PolyStress with that from
PolyTop to point out the importance of a stress-based
framework to obtain optimized structures that can carry the
applied loads while avoiding material failure.

9 Conclusions

We have presented a framework for topology optimization
considering local (non-aggregated) stress constraints that
is based on the augmented Lagrangian (AL) method,
which led to the educational Matlab code, PolyStress.
The code belongs to a family of educational Matlab
codes for topology optimization on unstructured polygonal
finite element meshes including PolyTop (Talischi et al.
2012b), PolyFluid (Pereira et al. 2016), and PolyMat
(Sanders et al. 2018). PolyStress considers material
nonlinearities, and thus, we modify PolyTop’s analysis
routine to solve the nonlinear finite element problem using
the Newton-Raphson method. To solve the problem with
local stress constraints, we also modify the optimization
algorithm and incorporate the AL method. Using the AL
method, we solve the original optimization problem with
many constraints as a series of unconstrained optimization
problems and update the design variables using a version
of MMA tailored to solve the unconstrained AL sub-
problems. The solution of the convex approximation for the
unconstrained sub-problems can be found explicitly, which
saves a considerable amount of computational resources.

PolyStress is the first educational code for stress-
constrained topology optimization available in the technical
literature, and thus, we hope that it will motivate
researchers in the field to explore and learn AL-based tech-
niques to solve optimization problems beyond those investi-
gated in this work. Because PolyStress has the unique
ability to solve optimization problems with many stress
constraints, we also hope that it will serve as a bridge toward
the development of commercial software that can make topo-
logy optimization suitable for industry-relevant applications.

We conclude this work by quoting Duysinx and Bendsøe
(1998):

“The improvement of the quality of the analysis of the
stress field is also of great interest in order to make the stress
design methods more relevant in many applications.”

In the present context, we reinforce that the stress
design methods in engineering applications rely on con-
sistency between topology optimization considering stress
constraints and continuum mechanics. Thus, stresses should
be treated locally both in the optimization phase and in
the numerical solution of the associated boundary value
problem.
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Appendix A: Library of benchmark examples

We provide a summary of the design problems discussed
herein, including a description of the design domain and
the names of the Matlab files needed to generate the finite
element mesh for each problem.

Appendix B: Imposing symmetry using
the regularization filter

In a continuum setting, we can impose symmetries to the
space of admissible density fields by means of the operator
Ps(η(x)), which maps the design function ηx according
to the desired symmetries (e.g., Ps(η(x)) = η(x1, |x2|)
if we desire symmetries with respect to the x1-axis). The
symmetrized space of admissible density fields is given
by (12) and leads to a regularization mapping of the form
P(η) = (PF ◦ Ps)(η).
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Now, in a discretized setting, the symmetrized filter
matrix P (i.e., the discrete counterpart of P), becomes:

P�k = w�kvk

N∑
j=1

w�jvj

, w�k = max

(
0, 1 − ‖x̃� − x̃k‖2

R

)q

,

(74)

where x̃� (or x̃k) are given by:

x̃� =
[
x�
1, |x�

2|
]T

, (75)

when imposing symmetry about the x1-axis:

x̃� =
[
|x�

1|, x�
2

]T
, (76)

when imposing symmetry about the x2-axis, and:

x̃� =
[
|x�

1|, |x�
2|
]T

, (77)

when imposing symmetry about both the x1-axis and
the x2-axis. The capability of imposing symmetry to the
designs through the filter matrix has been added to the
PolyFilter routine, which can be found in the electronic
supplementary material.

Appendix C: Continuity proof for the bilinear
material model

As discussed by Curnier et al. (1994), the specific strain
energy function from (59) is continuous in the entire space

Table 6 Examples provided with PolyStress

Domain Description

•PolyMesher domain file: @L bracketDomain

• Dimensions and loads: L = 1, d = 0.06, P = 2

• Material: linear with E0 = 70 GPa, ν0 = 0.25, and σlim = 100 MPa

• Filter radius: R = 0.05

•PolyMesher domain file: @PortalDomain

• Dimensions and loads: L = 12, H = 6, d = 1, P = 300

• Material: linear material with E0 = 100 GPa, ν0 = 0.25, and σlim = 1000 MPa

• Filter radius: R = 0.25

•PolyMesher domain file: @EyeBarDomain

• Dimensions and loads: L = 1.6, H = 0.8, R = 0.15, d = 0.15, P = 70

•Material: linear with E0 = 200 GPa, ν0 = 0.3, and σlim = 450 MPa

• Filter radius: R = 0.04

•PolyMesher domain file: @CrackDomain

• Dimensions and loads: L = 2, d = 0.1, P = 5

• Material: linear with E0 = 70 GPa, ν0 = 0.25, and σlim = 100 MPa

• Filter radius: R = 0.045
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Table 6 (continued)

Domain Description

•PolyMesher domain file: @CorbelDomain

• Dimensions and loads: L = 2, d = 0.3, P = 15

• Material 1: linear with E0 = 70 GPa, ν0 = 0.25, and σlim = 90 MPa

• Material 2: bilinear material with Et = 70 GPa, Ec = 28 GPa, G = 28 GPa, and
σlim = 90 MPa

• Filter radius: R = 0.15

•PolyMesher domain file: @AntennaDomain

• Dimensions and loads: L = 1, H = 1.75, d = 0.048, P = 40

• Material 1: linear with E0 = 120 GPa, ν0 = 0.3, and σlim = 1000 MPa

• Materials 2 and 3: compressible Ogden with E0 = 120 GPa, ν0 = 0.3, α1 = ±100, and
σlim = 1000 MPa

• Filter radius: R = 0.08

•PolyMesher domain file: @HookDomain

• Dimensions and loads: dimensions are 1/100 of those from Talischi et al. (2012b) and P = 5

• Material: linear with E0 = 100 GPa, ν0 = 0.25, and σlim = 120 MPa

• Filter radius: R = 0.04

of infinitesimal strains, E . In fact, according to (59), the
material behaves as a linear material with properties (λt , μ)
when χ(ε) = tr(ε) > 0 (i.e., in the tension sub-domain, Et )
and as a linear material with properties (λc, μ) when χ(ε) =
tr(ε)<0 (i.e., in the compression sub-domain, Ec). Below, we
demonstrate that both the strain energy and the stress tensor
are continuous in the entire space of infinitesimal strains.

First, we demonstrate that the strain energy density
function (59) is continuous in E . According to (59)–(60), if
tr(ε) > 0:

W0 = W+
0 = 1

2
λt tr

2(ε) + μtr(ε2), (78)

which is a twice continuously differentiable function on Et .
Similarly, if tr(ε) < 0:

W0 = W−
0 = 1

2
λctr

2(ε) + μtr(ε2), (79)

which is a twice continuously differentiable function on Ec.
The strain energy is also continuous across the interface
between the tension and the compression sub-domains (i.e.,
when tr(ε) = 0) because:

W0 |tr(ε)=0 = W+
0 |tr(ε)=0 = W−

0 |tr(ε)=0 = μtr(ε2). (80)

Following the same procedure, we now demonstrate that
the stress tensor, σ = ∂W0

∂ε
, is also continuous across the

entire strain space. According to (60) and (61)1, if tr(ε) > 0:

σ (ε) = σ+ = λt tr(ε)I + 2με, (81)

which is continuously differentiable on Et . Similarly, if
tr(ε) < 0:

σ (ε) = σ− = λctr(ε)I + 2με, (82)

which is continuously differentiable on Ec. Now, across
the interface between the tension and the compression
sub-domains (i.e., when tr(ε) = 0), we have:

σ (ε) |tr(ε)=0 = σ+ |tr(ε)=0 = σ− |tr(ε)=0 = 2με, (83)

which concludes our proof of continuity. The elasticity
tensor in (61)2 can be discontinuous across the interface
between the tension and the compression subdomains,
but it is nonetheless piecewise continuous on Et and Ec,
respectively. This discontinuity in the elasticity tensor
has not shown any adverse effect in terms of numerical
instabilities and has not caused convergence issues.
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Appendix D: PolyScript
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Appendix E: PolyStress
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Appendix F: NLFEM
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